期刊文献+

一种基于视觉显著性的SAR图像弱目标检测算法 被引量:1

An Algorithm of Dim Targets on SAR Image Detection Based on Visual Saliency Model
下载PDF
导出
摘要 针对传统的恒虚警率(CFAR)算法应用于SAR图像弱目标检测存在虚警率高的问题,提出一种基于改进型Itti视觉显著性模型的新算法。该算法首先获取SAR图像的局部方差特征图、亮度频率特征图和全局对比度特征图,然后将特征图经高斯模糊和归一化后,将其非线性融合生成原始SAR图像尺度的显著图,最后从显著图中提取视觉显著性区域作为最终的检测结果。仿真结果表明,通过和改进型CFAR、相干CFAR和二维Otsu检测三种算法的检测性能对比,该算法在检测准确率和时间复杂度上均具有良好的性能。 In view of the high false alarm probability when Constant False Alarm Rate (CFAR) algorithm is applied to detect dim targets on SAR image, an improved Itti algorithm is propsed based on visual saliency model. With this algorithm, feature maps of local variance, brightness frequency and global contrast can be acquired firstly. Then, through Gaussian blur and normalization of such feature maps, saliency maps of the same size with the original SAR image are generated through non-linear fusion. Final detection results are extracted from the visual salience region. Through a comparison between our algorithm and other three algorithms, namely, the improved CFAR, coherent CFAR and two-dimensional OTSU algorithm, the proposed one has a better performance with regard to detection accuracy and time complexity can be find.
作者 张衡 卢明明 来东辉 ZHANG Heng;LU Ming-ming;LAI Dong-hui(College of Electronic Countermeasures, National University of Defense Technology,Hefei 230037)
出处 《电子信息对抗技术》 2019年第2期1-6,共6页 Electronic Information Warfare Technology
基金 国家自然科学基金(61671453) 国防科技大学科研计划项目(ZK17-03-35)
关键词 弱目标检测 SAR图像 视觉显著性 区域生长 dim target detection SAR image visual salience regional growing
  • 相关文献

参考文献2

二级参考文献17

  • 1张细燕,何隆华.基于SAR与Landsat TM的小区域稻田的识别研究——以南京市江宁区为例[J].遥感技术与应用,2015,30(1):43-49. 被引量:5
  • 2刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 3范九伦,赵凤.灰度图像的二维Otsu曲线阈值分割法[J].电子学报,2007,35(4):751-755. 被引量:150
  • 4范九伦,赵凤,张雪峰.三维Otsu阈值分割方法的递推算法[J].电子学报,2007,35(7):1398-1402. 被引量:69
  • 5WU S,AMIN A.Automatic thresholding of gray-level using multi-stage approach[C]//Proc of the 7th International Conference onDocument Analysis and Recognition.Washington DC:IEEE Comput-er Society,2003:493-497.
  • 6MURTHY C A,PAL S K.Histogram thresholding by minimizinggray-level fuzziness[J].Information Science,1992,60(1-2):107-135.
  • 7MEDINA-CAMICER R,MADRID-CUEVAS F J.Unimodal threshol-ding for edge detection[J].Pattern Recognition,2008,41(7):2337-2346.
  • 8WANG Na,LI Xia,CHEN Xiao-hong.Fast three-dimensional Otsuthresholding with shuffled frog-leaping algorithm[J].PatternRecognition Letters,2010,31(13):1809-1815.
  • 9REALE M,HUNG T,YIN Li-jun.Pointing with the eyes:gaze esti-mation using a static/active camera system and 3D iris disk model[C]//Proc of IEEE International Conference on Multimedia and Ex-po.[S.l.]:IEEE,2010:280-285.
  • 10WANG Lu,YANG Gong-ping,YIN Yi-long.Fast iris localizationbased on improved Hough transform[C]//Proc of the 5th Internatio-nal Conference on Rough set and Kncwledge Technology.Berlin:Springer-Verlag,2010:439-446.

共引文献19

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部