期刊文献+

Targeted energy transfer of a parallel nonlinear energy sink 被引量:5

Targeted energy transfer of a parallel nonlinear energy sink
下载PDF
导出
摘要 A parallel nonlinear energy sink(NES) is proposed and analyzed. The parallel NES is composed of a vibro-impact(VI) NES and a cubic NES. The dynamical equation is given, and the essential analytical investigation is carried out to deal with the cubic nonlinearity and impact nonlinearity. Multiple time-scale expansion is introduced, and the zeroth order is derived to give a rough outline of the system. The underlying Hamilton dynamic equation is given, and then the optimal stiffness is expressed. The clearance is regarded as a critical factor for the VI. Based on the periodical impact treatment by analytical investigation, the relationships of the cubic stiffness, the clearance, and the zeroth-order attenuation amplitude of the linear primary oscillator(LPO) are obtained.A cubic NES under the optimal condition is compared with the parallel NES. Harmonic signals, harmonic signals with noises, and the excitation generated by a second-order?lter are considered as the potential excitation forces on the system. The targeted energy transfer(TET) in the designed parallel NES is shown to be more e?cient. A parallel nonlinear energy sink(NES) is proposed and analyzed. The parallel NES is composed of a vibro-impact(VI) NES and a cubic NES. The dynamical equation is given, and the essential analytical investigation is carried out to deal with the cubic nonlinearity and impact nonlinearity. Multiple time-scale expansion is introduced, and the zeroth order is derived to give a rough outline of the system. The underlying Hamilton dynamic equation is given, and then the optimal stiffness is expressed. The clearance is regarded as a critical factor for the VI. Based on the periodical impact treatment by analytical investigation, the relationships of the cubic stiffness, the clearance, and the zeroth-order attenuation amplitude of the linear primary oscillator(LPO) are obtained.A cubic NES under the optimal condition is compared with the parallel NES. Harmonic signals, harmonic signals with noises, and the excitation generated by a second-order?lter are considered as the potential excitation forces on the system. The targeted energy transfer(TET) in the designed parallel NES is shown to be more e?cient.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第5期621-630,共10页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China(Nos.11632011,11702170,11472170,51421092,and 11572189)
关键词 TARGETED ENERGY transfer (TET) NONLINEAR ENERGY SINK (NES) NONLINEAR VIBRATION absorber impact VIBRATION reduction targeted energy transfer(TET) nonlinear energy sink(NES) nonlinear vibration absorber impact vibration reduction
  • 相关文献

同被引文献25

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部