期刊文献+

Flat-plate hypersonic boundary-layer ?ow instability and transition prediction considering air dissociation 被引量:2

Flat-plate hypersonic boundary-layer ?ow instability and transition prediction considering air dissociation
下载PDF
导出
摘要 The effects of air dissociation on ?at-plate hypersonic boundary-layer ?ow instability and transition prediction are studied. The air dissociation reactions are assumed to be in the chemical equilibrium. Based on the ?at-plate boundary layer, the ?ow stability is analyzed for the Mach numbers from 8 to 15. The results reveal that the consideration of air dissociation leads to a decrease in the unstable region of the ?rst-mode wave and an increase in the maximum growth rate of the second mode. High frequencies appear earlier in the third mode than in the perfect gas model, and the unstable region moves to a lower frequency region. When the Mach number increases, the second-mode wave dominates the transition process, and the third-mode wave has little effect on the transition. Moreover, when the Mach number increases from 8 to 12, the N-factor envelope becomes higher, and the transition is promoted. However, when the Mach number exceeds 12, the N-factor envelope becomes lower, and the transition is delayed. The N-factor envelope decreases gradually with the increase in the altitude or Mach number. The effects of air dissociation on ?at-plate hypersonic boundary-layer ?ow instability and transition prediction are studied. The air dissociation reactions are assumed to be in the chemical equilibrium. Based on the ?at-plate boundary layer, the ?ow stability is analyzed for the Mach numbers from 8 to 15. The results reveal that the consideration of air dissociation leads to a decrease in the unstable region of the ?rst-mode wave and an increase in the maximum growth rate of the second mode. High frequencies appear earlier in the third mode than in the perfect gas model, and the unstable region moves to a lower frequency region. When the Mach number increases, the second-mode wave dominates the transition process, and the third-mode wave has little effect on the transition. Moreover, when the Mach number increases from 8 to 12, the N-factor envelope becomes higher, and the transition is promoted. However, when the Mach number exceeds 12, the N-factor envelope becomes lower, and the transition is delayed. The N-factor envelope decreases gradually with the increase in the altitude or Mach number.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第5期719-736,共18页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China(Nos.11732011,11672205,and 11332007) the National Key Research and Development Program of China(No.2016YFA0401200)
关键词 AIR DISSOCIATION TRANSITION prediction BOUNDARY layer air dissociation transition prediction boundary layer
  • 相关文献

参考文献3

二级参考文献9

共引文献16

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部