摘要
利用最小二乘支持向量机(least square support vector machine, LSSVM)预测建筑表面的风压.为提高LSSVM对风压预测的泛化能力与精度,提出了基于混合蚁群(ant colony optimization, ACO)和粒子群(particle swarm optimization, PSO)优化LSSVM的预测方法(ACO+PSO-LSSVM),对参数进行搜索寻优,该方法避免了ACO和PSO二者的缺点并实现优势互补.利用ACO+PSO-LSSVM算法对建筑表面风压进行单点和空间点预测,并与ACO-LSSVM和PSO-LSSVM算法作比较.结果表明,基于混合蚁群优化和粒子群优化的LSSVM预测模型预测精度高、鲁棒性强,具有较高的工程应用前景.
Least squares support vector machine (LSSVM)is used to predict wind pressure on building surfaces.To enhance the generalization performance and prediction accuracy of LSSVM for wind pressure,LSSVM based on combination of ant colony optimization (ACO) and particle swarm optimization (PSO) is proposed to find optimal parameters.The combination avoids shortcomings in ACO and PSO,and achieves complementary focus of both. Using LSSVM based on ACO+PSO,wind pressure is forecast.It is compared with ACObased LSSVM and PSO-based LSSVM,respectively.The numerical analysis shows that the proposed method can improve prediction accuracy and robustness of LSSVM,and has good prospects in engineering applications.
作者
涂伟平
李春祥
TU Weiping;LI Chunxiang(Department of Civil Engineering,Shanghai University,Shanghai 200444,China)
出处
《上海大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第2期347-356,共10页
Journal of Shanghai University:Natural Science Edition
基金
国家自然科学基金资助项目(51378304)
关键词
风压预测
最小二乘支持向量机
智能算法
蚁群优化算法
粒子群优化算法
wind pressure forecast
least square support vector machine (LSSVM)
intelligent optimization
ant colony optimization (ACO)
particle swarm optimization (PSO)