期刊文献+

基于混合智能算法优化LSSVM的短期风压预测 被引量:6

Short-term wind pressure forecast using LSSVM based on hybrid intelligent algorithm optimization
下载PDF
导出
摘要 利用最小二乘支持向量机(least square support vector machine, LSSVM)预测建筑表面的风压.为提高LSSVM对风压预测的泛化能力与精度,提出了基于混合蚁群(ant colony optimization, ACO)和粒子群(particle swarm optimization, PSO)优化LSSVM的预测方法(ACO+PSO-LSSVM),对参数进行搜索寻优,该方法避免了ACO和PSO二者的缺点并实现优势互补.利用ACO+PSO-LSSVM算法对建筑表面风压进行单点和空间点预测,并与ACO-LSSVM和PSO-LSSVM算法作比较.结果表明,基于混合蚁群优化和粒子群优化的LSSVM预测模型预测精度高、鲁棒性强,具有较高的工程应用前景. Least squares support vector machine (LSSVM)is used to predict wind pressure on building surfaces.To enhance the generalization performance and prediction accuracy of LSSVM for wind pressure,LSSVM based on combination of ant colony optimization (ACO) and particle swarm optimization (PSO) is proposed to find optimal parameters.The combination avoids shortcomings in ACO and PSO,and achieves complementary focus of both. Using LSSVM based on ACO+PSO,wind pressure is forecast.It is compared with ACObased LSSVM and PSO-based LSSVM,respectively.The numerical analysis shows that the proposed method can improve prediction accuracy and robustness of LSSVM,and has good prospects in engineering applications.
作者 涂伟平 李春祥 TU Weiping;LI Chunxiang(Department of Civil Engineering,Shanghai University,Shanghai 200444,China)
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第2期347-356,共10页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(51378304)
关键词 风压预测 最小二乘支持向量机 智能算法 蚁群优化算法 粒子群优化算法 wind pressure forecast least square support vector machine (LSSVM) intelligent optimization ant colony optimization (ACO) particle swarm optimization (PSO)
  • 相关文献

参考文献5

二级参考文献54

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2杨延西,刘丁.基于小波变换和最小二乘支持向量机的短期电力负荷预测[J].电网技术,2005,29(13):60-64. 被引量:85
  • 3刘雄,陈严,叶枝全.遗传算法在风力机风轮叶片优化设计中的应用[J].太阳能学报,2006,27(2):180-185. 被引量:29
  • 4许磊,张凤鸣,程军.基于PSO神经网络的故障诊断方法研究[J].计算机工程与设计,2007,28(15):3640-3641. 被引量:13
  • 5CADENAS E, RIVERA W.Wind speed forecasting in the south coast of Oaxaca,Mexico [J].Renewable Energy, 2007,32(12) : 2116-2128.
  • 6P A MASTOROCOSTAS, J B THEOCHAIRS, A G BAKIRTZIS. Fuzzy modelling for short term load forecasting using the orthogonal least squares method [J].IEEE Trails Energy Conversion, 1999,14(1): 29- 36.
  • 7D A FADARE. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria [J]. Applied Energy, 2010,87 : 934-942.
  • 8DAMOUSIS IG,ALEXIADIS MC,THEOCHARIS J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation [J]. IEEE Transactions on Energy Conversion, 2004,19 ( 2 ) : 352-361.
  • 9MOHAMMAD MONFARED, HASAN RASTEGAR, HOSSEIN MADADI KOJABADI. A new strategy for wind speed forecasting using artificial intelligent methods [J]. Renewable Energy, 2009,34 : 845 - 848.
  • 10R E ABDEL -AAL,M A ELHADIDY,S M SHAAHID. Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks [J]. Renewable Energy, 2009, 34 : 1686-1699:.

共引文献106

同被引文献63

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部