期刊文献+

基于近红外图像的嵌入式人员在岗检测系统 被引量:3

Embedded Personnel On-the-job Detection System Based on Near-infrared Image
下载PDF
导出
摘要 在岗检测是现代安防领域中视频分析的一个重要研究方向,应用领域非常广泛。本文设计并实现了一种嵌入式人员在岗检测系统,为了提高此嵌入式系统的运行速度,提出了改进的人脸特征点检测方法;并且为了提高系统的检测准确率,建立了一个近红外人脸样本库。该系统通过近红外摄像头采集实时图像,然后进行人脸特征点检测,获取被检测人的面部信息。根据违规行为判断准则,判断当前是否出现违规动作并且发出警报。实验结果表明:在规定条件下,系统的人脸特征点检测准确率达到了95%,针对两种异常情况的检测准确率也都超过了94%,具有良好的实时性能。 On-the-job detection is an important research direction for video analytics in the field of modern security,with a wide range of applications.This study designs and implements an embedded personnel on-the-job detection system.To improve the running speed of this embedded system,we proposed an improved face landmarks detection method,and to improve the accuracy of detection by the system,we established a near-infrared face database.This system initially collects real-time images through a near-infrared camera;subsequently,it performs face landmark detection to obtain the facial information of the detected person.According to predefined rules to identify violations,the system decides whether an illegal action has occurred and sends out alarm.The experimental results show that the accuracy of face landmark detection by the system reached 95%under the specified conditions,and the detection accuracy rate for two abnormal conditions exceeded 94%,both while maintaining a good real-time performance.
作者 苏育挺 陈耀 吕卫 SU Yuting;CHEN Yao;LYU Wei(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
出处 《红外技术》 CSCD 北大核心 2019年第4期377-382,共6页 Infrared Technology
基金 国家自然科学基金(61572356)
关键词 近红外 嵌入式 在岗检测 人脸特征点检测 near-infrared embedded on-the-job detection face landmarks detection
  • 相关文献

参考文献2

二级参考文献41

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 2Aggarwal J K, Ryoo M S. Human activity analysis: A review[J]. ACM Computing Surveys, 2011, 43(3): No.16.
  • 3Weinland D, Ronfard R, Boyer E. A survey of vision- based methods for action representation, segmentation and recognition[J]. Computer Vision and Image Understanding, 2011,115(2): 224-241.
  • 4Cheng L :, Sun Q, Su H, et al. Design and implementation of human-robot interactive demonstration system based on Kinect [C]//Proceedings of the 24th Chinese Control and Decision Conference. Piscataway, USA: IEEE, 2012: 971-975.
  • 5Wu J X, Osuntogun A, Choudhury T, et al. A scalable ap- proach to activity recognition based on object use[C]//IEEE In- ternational Conference on Computer Vision. Piscataway, USA: IEEE, 2007: 1-8.
  • 6Li C C, Chen Y Y. Human posture recognition by sim- ple rules[C]//2006 1EEE International Conference on Systems, Man, and Cybernetics. Piscataway, USA: IEEE, 2007: 3237- 3240.
  • 7Rodriguez M D, Ahmed J, Shah M. Action MACH: A spatio- temporal maximum average correlation height filter for action recognition[C]//IEEE Conference on Computer Vision and Pat- tern Recognition. Piscataway, USA: IEEE, 2008: 3001-3008.
  • 8Biswas J, Veloso M. Depth camera based indoor mobile robot localization and navigation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2012: 1697-1702.
  • 9Noel R R, Salekin A, Islam R. A natural user interface class- room based on Kinect[J]. IEEE Learning Technology, 2011, 13(4): 59-61.
  • 10Rogers III J G, Christensen H I. A conditional random field model for place and object classification[C]//IEEE Internation- al Conference on Robotics and Automation. Piscataway, USA: IEEE, 2012: 1766-1772.

共引文献39

同被引文献16

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部