期刊文献+

粒子流粒子滤波检测前跟踪方法 被引量:4

Particle Flow Particle Filter Track-Before-Detect Method
下载PDF
导出
摘要 检测前跟踪通过积累多帧量测以检测和跟踪微弱目标。积累的关键在于对目标后验密度的准确表示。传统粒子滤波器过于依赖建议密度,因而对目标后验密度的表示不够准确。新提出的粒子流滤波器能够准确表示目标后验密度,但无法实现量测的帧间积累。为此,本文提出一种在粒子滤波框架下结合粒子流的检测前跟踪方法:采用粒子滤波框架实现多帧量测积累,并在每一帧内采用Localized Exact Daum-Huang粒子流表示目标后验密度,以提升量测积累效果。我们通过Rayleigh杂波下Swerling1型起伏目标的检测和跟踪实验证明了所提算法的性能。 The track-before-detect strategy detects and tracks weak targets by the integration of measurements in multiple frames.The key step to the integration is the accurate characterization of the target posterior.The traditional particle filter relies too much on the proposal density,and thus the characterization is not exact enough.The newly presented particle flow filter can represent the target posterior exactly.However,it neglects the multi-frame integration.Therefore,in this paper,a novel track-before-detect scheme is proposed,which incorporates a particle flow filter into an encompassing particle filter framework.The particle filter is used for multi-frame measurement integration,and within each frame the Localized Exact Daum-Huang filter is used to represent the target posterior to improve the effect of integration.The performance of the proposed algorithm is evaluated by simulations of a Swerling 1 fluctuating target detecting and tracking in Rayleigh clutter.
作者 柳超 王子微 孙进平 Liu Chao;Wang Ziwei;Sun Jinping(School of Electronic and Information Engineering,Beihang University,Beijing 100191,China;PLA 92853 Unit,Huludao,Liaoning 125106,China)
出处 《信号处理》 CSCD 北大核心 2019年第3期342-350,共9页 Journal of Signal Processing
基金 国家自然科学基金资助项目(61471019 U1633122)
关键词 微弱目标 检测前跟踪 粒子滤波器 粒子流 weak targets track-before-detect particle filter particle flow
  • 相关文献

参考文献2

二级参考文献29

  • 1邓小龙,谢剑英,倪宏伟.Improved Particle Filter for Target Tracking[J].Chinese Journal of Aeronautics,2005,18(2):166-170. 被引量:4
  • 2胡洪涛,敬忠良,胡士强.基于辅助粒子滤波的红外小目标检测前跟踪算法[J].控制与决策,2005,20(11):1208-1211. 被引量:25
  • 3Julian Horst. Target Maneuver Detection Using a Particle Filter with Spawn Model and Particle Labeling[ C ]//Work- shop on Sensor Data Fusion: Trends, Solutions, Applica- tions, Bonn, September 2012:93-98.
  • 4Grossi E, Lops M, Venturino L. A Novel Dynamic Pro- gramming Algorithm for Track-before-detect in Radar Sys- tems[J]. IEEE Transactions on Signal Processing. 2013, 61(10) : 2608-2619.
  • 5Moyer R, Spak J, Lamanna P. A multi-dimensional Hough transform based track-before-detect technique for detecting weak targets in strong clutter background [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4) :3062-3068.
  • 6Salmond D J, Birch H. A particle filter for track-before- detect[ C] ////Proceedings of the American Control Confer- ence. Arlington, 2001: 3755-3760.
  • 7Rutten M G, Gordon N J, Maskell S. Recursive track- before-detect with target amplitude [ J ]. lET Radar, Sonar and Navigation, 2005, 152(5) : 345-352.
  • 8Mc Ginnity, Irwin G W. Multiple model Bootstrap filter for maneuvering target tracking [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36 ( 3 ) : 1106-1012.
  • 9Peter Hlinomaz, Lang Hong. A multi-rate multiple model track-before-detect particle filter [ J ]. Mathematical and Computer Modelling, 2009,49 (5) : 146-162.
  • 10Pitt M K, Shephard N. Filtering via simulation: auxiliary particle filters[J]. Journal of the American Association, 1999, 94(446): 590-599.

共引文献22

同被引文献17

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部