期刊文献+

基于均匀分布NSGAII算法的污水处理多目标优化控制 被引量:8

Optimal control of wastewater treatment process using NSGAII algorithm based on multi-objective uniform distribution
下载PDF
导出
摘要 针对污水处理过程控制中能耗过大、出水水质超标严重等问题,提出了一种基于均匀分布的NSGAII(non-dominated sorting genetic algorithm II based on uniform distribution, UDNSGAII)多目标优化智能控制系统。首先,该方法以污水处理能耗和出水水质作为优化目标,建立多目标优化模型。其次,为了获得溶解氧和硝态氮的优化设定值,提高Pareto解的性能,该算法将种群映射到目标函数对应的超平面,并在该平面上进行聚类以增加解的多样性。此外,加入分布性判断模块和分布性加强模块提高解的分布性。最后,采用比例积分微分(proportional integral derivative, PID)控制器对溶解氧和硝态氮的优化设定值进行底层跟踪控制。为了验证该算法的有效性,采用国际基准的污水处理仿真平台(benchmark simulation model No.1, BSM1)来进行实验。结果显示,所提出的UDNSGAII多目标优化控制方法能够在满足出水水质达标的同时,有效地降低污水处理过程能耗。 Aiming at the problems of excessive energy consumption (EC) and exceeded seriously effluent quality (EQ) in wastewater treatment control process, an optimal control of wastewater treatment process using a multi-objective uniform distribution NSGAII algorithm (UDNSGAII) was proposed. Firstly, EC and EQ of wastewater treatment are regarded as optimization objectives, and the multi-objective optimal control model is established. Secondly, to obtain the optimal set values of dissolved oxygen (DO) and nitrate nitrogen (NO), and improve the performance of Pareto solution, the individuals which have been clustered are mapped to the hyperplane of the corresponding objective function, then, the diversity of population is increased. In addition, the distribution judgment module and distributed enhancement module are used to improve the distribution of solutions. Finally, PID controller as the bottom controller is used to track the optimal setting value of DO and NO. To test the effectiveness of the proposed algorithm, benchmark simulation model No. 1 (BSM1) is used. The results show that the proposed UDNSGAII multi-objective optimization control method can effectively reduce EC of wastewater treatment process while meeting EQ standards.
作者 李霏 杨翠丽 李文静 乔俊飞 LI Fei;YANG Cuili;LI Wenjing;QIAO Junfei(Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;Beijing Key Laboratory ofComputational Intelligence and Intelligent System, Beijing 100124, China)
出处 《化工学报》 EI CAS CSCD 北大核心 2019年第5期1868-1878,共11页 CIESC Journal
基金 国家自然科学基金项目(61533002 61603012 61603009) 北京市教委项目(KM201710005025) 北京市博士后工作经费资助项目(2017ZZ-028) 中国博士后科学基金资助项目 北京市朝阳区博士后工作经费资助项目(2017ZZ-01-07) 北京市自然科学基金项目(4182007)
关键词 污水处理过程 均匀分布 遗传算法 优化 控制 wastewater treatment process uniform distribution genetic algorithm optimal control
  • 相关文献

参考文献5

二级参考文献20

  • 1Copp J.The cost simulation benchmark: Description and simulator manual[M].Luxembourg: Office for Publications of the European Community,2002: 3-4.
  • 2Piotrowski R,Brdys M A,Konarczak K,et al.Hierarchical dissolved oxygen control for activated sludge processes[J].Control Engineering Practice,2008,16(1): 114-131.
  • 3Beraud B,Steyer J P.Towards a global multi objective optimization of wastewater treatment plant based on modeling and genetic algorithms[J].Water Science & Technology,2007,56(9): 109-116.
  • 4Hopfield J,Tank D.Neural computation of decisions in optimization problems[J].Biological Cybernetics,1985,52: 141-152.
  • 5Walsh M,Malley M.Augmented Hopfield network for unit commitment and economic dispatch[J].IEEE Trans on Power Systems,1997,12(4): 1765-1774.
  • 6Dieu V,Ongsakul W.Enhanced augmented Lagrangian Hopfield network for unit commitment[J].IEEE Proc of Generation,Transmission and Distribution,2006,153(6): 624-632.
  • 7Ayesa E,Sota A,Grau P,et al.Supervisory control strategies for the new WWTP of Galindo-Bilbao: The long run from the conceptual design to the full-scale experimental validation[J].Water Science and Technology,2006,53(4/5): 193-201.
  • 8张平,苑明哲,王宏.前置反硝化污水生化处理过程优化控制[J].信息与控制,2008,37(1):113-118. 被引量:12
  • 9乔俊飞,韩红桂.神经网络结构动态优化设计的分析与展望[J].控制理论与应用,2010,27(3):350-357. 被引量:20
  • 10史雄伟,乔俊飞,苑明哲.基于改进粒子群优化算法的污水处理过程优化控制[J].信息与控制,2011,40(5):698-703. 被引量:17

共引文献79

同被引文献75

引证文献8

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部