期刊文献+

带周期边界的时间分数阶扩散方程的差分格式 被引量:1

Finite Difference Schemes for Time Fractional Diffusion Equations with Periodic Boundary Conditions
下载PDF
导出
摘要 鉴于分数阶方程的解析解实难求得,本文主要研究了带周期边界的时间分数阶扩散方程的有限差分方法,时间方向采用L2-1σ离散公式,空间方向采用二阶差分格式离散,数值格式整体可达到二阶精度.随后利用Fourier方法证明了有限差分格式的唯一可解性、稳定性和收敛性.最后用MATLAB语言对具体的模型进行了数值求解,数值实验能很好地印证理论结果. Generally,the analytic solution for fractional differential equations is hard to obtain.The difference scheme of time fractional diffusion equations with periodic boundaries is mainly studied,adopting the L2-1σ formula in temporal direction,and the second order difference approximation in spatial direction.The proposed scheme can obtain second order accuracy globally.The unique solvability,stability and convergence of the proposed scheme are proved by the Fourier method.Finally,the specific fractional models are solved numerically by MATLAB language.Numerical experiments are carried out to support the theoretical results.
作者 张会琴 汪志波 Zhang Hui-qin;Wang Zhi-bo(School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510520,China)
出处 《广东工业大学学报》 CAS 2019年第3期74-79,共6页 Journal of Guangdong University of Technology
基金 国家自然科学基金资助项目(11701103) 广东省自然科学基金资助项目(2017A030310538) 广东省青年拔尖人才项目(2017GC010379) 广东省高校特色创新项目(2017KTSCX062) 广东工业大学基金资助项目(220413131 220413550)
关键词 分数阶扩散方程 Fourier方法 变系数 稳定性 收敛性 fractional diffusion equation Fourier method variable coefficients stability convergence
  • 相关文献

参考文献2

二级参考文献9

  • 1Black F,Scholes M.The pricing of options and corporate liabilities[J].J Political Economy,1973,81(5):637-659.
  • 2Schwartz E S.The valuation of warrants:implementing a new approach[J].J of Financial Economics,1977,4(1):79-93.
  • 3Buetow G W,Sockacki J S.The trade-offs between alternative finite difference techniques used to price derivative securities[J].Appl Math & Comp,2000,115(2):177-190.
  • 4Vazquez C.An upwind numerical approach for American and European option pricing model[J].Appl Math & Comp,1998,97(2):273-286.
  • 5Zvan R,Vetzal K R,Forsyth P A.PDE methods for pricing barrier options[J].Journal of Economic Dynamics Control,2000,24(11):1563-1590.
  • 6Izvorski I.A nonuniform grid method for solving PDE's[J].J of Economic Dynamics & Control,1998,22(8):1445-1452.
  • 7Chen A H,Conover J A.Valuing flexible manufacturing facilities as options[J].Quarterly Journal of Economics and Finance,1998,38(3):651-674.
  • 8Gilli M,Keellezi E,Pauletto G.Solving finite difference schemes arising in trivariate option pricing[J].Journal of Economic Dynamics Control,2002,26(9):1499-1515.
  • 9Freund R W,Golub G H,Nachtigal N M.Iterative solution of linear systems[J].Acta Numerica,1992,1(1):57-100.

共引文献5

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部