摘要
传统的压力管道内表面缺陷检测管道运行安全十分重要,目前检测方法对待检测管道的形状结构要求较高,检测方法低效耗时费力。设计了一种球形视频管道内缺陷检测机器人,通过搭载的高分辨率立体相机拍摄视管道内部频流,编制基于深度卷积神经网络软件对视频流进行带表面缺陷图片分选,采用Fast-RCNN快速区域卷积神经网络对管道缺陷进行标记,通过该标记可实现管道内部缺陷的安全评估,实验结果表明了该检测方法的有效性。
The traditional inner surface defect detection device is difficult to be used in the pipeline with complicated shapes, and the detection method is inefficient and time-consuming. A spherical video tube defect detection robot is designed. A software based on deep convolution neural network was developed to detect and classify the inner surface defects of the pipeline by capturing the video streams using a high resolution stereo camera. The Fast-RCNN fast region convolution neural network model was used to mark pipeline defects. The experimental results show the effectiveness of the proposed method.
作者
苏展
徐红伟
凌张伟
李静
钟绍俊
SU Zhan;XU Hong-wei;LING Zhang-wei;LI Jing;ZHONG Shao-jun(College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China;Zhejiang Provincial Special Equipment Inspection and Research Institute, Hangzhou 310012, China;Key Laboratory of Special Equipment Safety Testing Technology of Zhejiang Province, Hangzhou 310012, China)
出处
《测控技术》
2019年第4期26-30,36,共6页
Measurement & Control Technology
基金
浙江省公益技术研究社会发展项目(2016C33002)
关键词
球形视频机器人
管道
缺陷检测
深度卷积神经网络
快速区域卷积神经网络
spherical video tube defect detection robot
pipeline
defect detection
deep convolutional neural network
fast regional convolution neural network