期刊文献+

UGC特征对社会化电商消费者购买意愿的影响研究 被引量:2

Research on the In?uence of UGC Features on the Purchase Intention of Socialized E-Commerce Consumers
下载PDF
导出
摘要 在互联网+时代,新的商业模式成为主流,社交媒体的传播与沟通方式发生了改变。首先以社会影响理论为基础,研究用户自生内容的社会属性与价值共创对社会化电商消费者产生的影响,构建了社会化电商消费者购买意愿的概念模型。然后通过问卷调查,利用SPSS进行因子分析和回归分析。研究结果表明:UGC特征分为信息性特征和规范性特征2个因子,价值共创包括发起的价值共创和自发的价值共创2个因子;信息性特征对发起的价值共创没有显著影响,发起的价值共创对消费者购买意愿也没有显著影响,但是规范性和信息性特征对自发的价值共创和消费者购买意愿有显著的影响。最后在实证结论分析的基础上,对社会化商家和用户提出几点建议。 There has been a great change in the way of information exchange and communication of social media with the new business model as the mainstream in the Internet + era. Firstly, based on the theory of social impact,a research has been carried out on the impact of social attributes and value creation of user-generated motivation of social e-commerce consumers, thus establishing a conceptual model of the purchase intention of socialized e-commerce consumers. Then the factor analysis and regression analysis have been carried out based on a questionnaire survey by using SPSS. Research results show that UGC features can be divided into two factors: informative characteristics and normative characteristics, while value co-creation includes two factors: value co-creation and spontaneous value cocreation. Informational features exert no significant impact on the initiated value creation, which has no significant impact on consumers’ purchase intention as well. However, the normative and informative features have an signi?cant impact both on spontaneous value creation and consumers’ purchase intention. Finally, based on the empirical analysis,some suggestions have been put forward for social businesses and users.
作者 刘莉 高泉 LIU Li;GAO Quan(Business School,Hunan University of Technology,Zhuzhou Hunan 412007,China)
出处 《湖南工业大学学报》 2019年第2期53-59,共7页 Journal of Hunan University of Technology
关键词 UGC 购买意愿 信息性特征 规范性特征 价值共创 user generated content purchase intention informational characteristics normative feature value co-creation
  • 相关文献

参考文献5

二级参考文献115

  • 1郭红丽.客户体验维度识别的实证研究——以电信行业为例[J].管理科学,2006,19(1):59-65. 被引量:13
  • 2LESKOVEC J, McGLOHON M, FALOUTSOS C, et al. Cascading behavior in large blog graphs patterns and a model[ C]//Proc of the Society of Applied and Industrial Mathematics: Data Mining. 2007:551-556.
  • 3GRUHL D, GUHA R, LIBEN-NOVELL D, et al. Information diffusion through blogspace[ C ] //Proc of the 13th International Conference on World Wide Web. New York:ACM Press,2004:491-501.
  • 4NARAYANAM R, NARAHAR! Y. A shapley value-based approach to discover influential nodes in social networks[ J]. IEEE Trans on Automation Science and Engineering ,2011,20( 1 ) :130-147.
  • 5LAHIRI M, CEBRIN M. The genetic algorithm as a general diffusion model for social networks [ C ]//Proc of the 24th AAAI Conference on Artificial Intelligence. 2010:494 - 499.
  • 6SUH B, HONG Li-chan, PIROLLI P, et al. Want to be Retweeted? Large scale analytics on factors impacting retweet in twitter network [ C ]//Proc of IEEE International Conference on Social Computing. 2010 : 177-184.
  • 7CHA M,HADDADI H,BENEVENUTO F,et al. Measuring user influence in twitter: the million follower fallacy [ C ]//Proc of the 4th International AAAI Conference on Weblogs and Social Media. 2010:10-17.
  • 8Deutsch M, Gerard, H. A study of normative and informational social influences upon individual judgment [ J ]. Journal of abnormal and social psychology, 1955, 51 (3) : 629 - 636.
  • 9Asch S. Studies of independence and conformity: A minority of one against a unanimous majority[J]. Psychological monographs, 1956, 70(9) : 1 -70.
  • 10Duan W J. The Power of Consumer-to-Consumer Community (Network) on the Intcrnct: Consumer Decision-Making, Product Sales, and Product Diffusio [ D ]. Unpublished Doctorial Dissertation, 2006.

共引文献72

同被引文献44

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部