期刊文献+

利用超像素级上下文特征进行靠岸集装箱船检测 被引量:2

Detection Containers Based on Superpixel-Level Contextual Feature
原文传递
导出
摘要 高分辨率光学遥感影像中靠岸集装箱船受到岸边建筑、阴影和背景环境的干扰严重,且其船身模式与相邻陆地上集装箱非常相似,较难实现自动化检测。针对这一难题,提出了一种利用超像素级上下文特征进行靠岸集装箱船检测的方法。首先,对图像进行过分割生成超像素,在超像素区域提取颜色、纹理特征并级联邻域超像素特征形成超像素级上下文特征;然后,将目标超像素作为正样本,并自适应地选择较难区分的背景超像素作为负样本来训练分类器,实现对目标、背景超像素的分类;最后,利用全连接条件随机场对分类结果优化,实现对靠岸集装箱船的检测。实验结果表明,该方法能够较为可靠地检测靠岸集装箱船,具有一定的应用前景。 Inshore containers in high resolution optical imagery are under severe interference, such as structure, shadow, and environment, and the ship bodies are very similar to the container structures on nearby land. These situations make the automatic detection of inshore containers a very challenging task. In order to address this problem, this paper proposes a detection method for inshore containers based on the superpixel-level contextual feature. Firstly, the image is segmented into superpixels, and the features of the superpixel and its neighboring superpixels are concatenated into the superpixel-level contextual feature. Then, based on the positive samples and the actively selected negative samples, the target and the background superpixels are classified via machine learning. Finally, the fully connected conditional random field is employed to refine the classification result and realize the detection. The experimental result verifies the applicability of the proposed method.
作者 祝胜男 郭炜炜 柳彬 张增辉 郁文贤 ZHU Shengnan;GUO Weiwei;LIU Bin;ZHANG Zenghui;YU Wenxian(Shanghai University Key Laboratory of Intelligent Sensing and Recognition,Shanghai Jiao Tong University, Shanghai 200240, China)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2019年第4期578-585,共8页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金重点项目(61331015) 中国博士后科学基金(2015M581618)~~
关键词 光学遥感图像 集装箱船 靠岸舰船检测 超像素 上下文特征 支持向量机 全连接条件随机场 主动样本选择 optical remote sensing imagery containers inshore ship detection superpixel contextual feature support vector machine(SVM) fully connected conditional random field(CRF) active sample selection
  • 相关文献

参考文献4

二级参考文献63

  • 1汪闽,骆剑承,明冬萍.高分辨率遥感影像上基于形状特征的船舶提取[J].武汉大学学报(信息科学版),2005,30(8):685-688. 被引量:29
  • 2Settles B. Active Learning Literature Survey, Computer Science Technical Report 1648, University of Wisconsin- Madison, USA, 2009. 3-4.
  • 3Dasgupta S. Coarse sample complexity bounds for active learning. Advances in Neural Information Processing Sys- tems. Cambridge: The MIT Press, 2006. 235-242.
  • 4Tong S, Chang E. Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM Inter- national Conference on Multimedia. New York, USA: ACM, 2001. 107-118.
  • 5Tong S, Koller D. Support vector machine active learning with applications to text classification. The Journal of Ma- chine Learning Research, 2002, 2:45-66.
  • 6Seung H S, Opper M, Sompolinsky H. Query by commit- tee. In: Proceedings of the 5th Annual Workshop on Com- putational Learning Theory. New York, USA: ACM, 1992. 287-294.
  • 7Dagan I, Engelson S P. Committee-based sampling for train- ing probabilistic classifiers. In: Proceedings of the 12th International Conference on Machine Learning. California, USA: Morgan Kaufmann, 1995. 150-157.
  • 8Hoi S C H, Jin R, Lyu M R. Batch mode active learning with applications to text categorization and image retrieval. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1233-1248.
  • 9Joshi A J, Porikli F, Papanikolopoulos N. Multi-class ac- tive learning for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog- nition. Miami, USA: IEEE, 2009. 2372-2379.
  • 10Zhu X J. Semi-supervised Learning Literature Survey, Computer Sciences Technical Report 1530, University of Wisconsin-Madison. USA. 2008. 11-13.

共引文献258

同被引文献17

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部