期刊文献+

Earth Pressure Distribution and Sand Deformation Around Modified Suction Caissons(MSCs) Under Monotonic Lateral Loading 被引量:2

Earth Pressure Distribution and Sand Deformation Around Modified Suction Caissons(MSCs) Under Monotonic Lateral Loading
下载PDF
导出
摘要 The modified suction caisson(MSC) is a novel type of foundation for ocean engineering, consisting of a short external closed-top cylinder-shaped structure surrounding the upper part of the regular suction caisson(RSC). The MSC can provide larger lateral bearing capacity and limit the deflection compared with the RSC. Therefore, the MSC can be much more appropriate to use as an offshore wind turbine foundation. Model tests on the MSC in saturated sand subjected to monotonic lateral loading were carried out to investigate the effects of external structure sizes on the sand surface deformation and the earth pressure distribution along the embedded depth. Test results show that the deformation range of the sand surface increases with the increasing width and length of the external structure. The magnitude of sand upheaval around the MSC is smaller than that of the RSC and the sand upheaval value around the MSC in the loading direction decreases with the increasing external structure dimensions. The net earth pressure in the loading direction acting on the internal compartment of the MSC is smaller than that of the RSC at the same embedded depth. The maximum net earth pressure acting on the external structure outer wall in the loading direction is larger than that of the internal compartment, indicating that a considerable amount of the lateral load and moment is resisted by the external skirt structure. The modified suction caisson(MSC) is a novel type of foundation for ocean engineering, consisting of a short external closed-top cylinder-shaped structure surrounding the upper part of the regular suction caisson(RSC). The MSC can provide larger lateral bearing capacity and limit the deflection compared with the RSC. Therefore, the MSC can be much more appropriate to use as an offshore wind turbine foundation. Model tests on the MSC in saturated sand subjected to monotonic lateral loading were carried out to investigate the effects of external structure sizes on the sand surface deformation and the earth pressure distribution along the embedded depth. Test results show that the deformation range of the sand surface increases with the increasing width and length of the external structure. The magnitude of sand upheaval around the MSC is smaller than that of the RSC and the sand upheaval value around the MSC in the loading direction decreases with the increasing external structure dimensions. The net earth pressure in the loading direction acting on the internal compartment of the MSC is smaller than that of the RSC at the same embedded depth. The maximum net earth pressure acting on the external structure outer wall in the loading direction is larger than that of the internal compartment, indicating that a considerable amount of the lateral load and moment is resisted by the external skirt structure.
出处 《China Ocean Engineering》 SCIE EI CSCD 2019年第2期198-206,共9页 中国海洋工程(英文版)
基金 financially supported by the National Natural Science Foundation of China(Grant Nos.51639002 and 51379118) the SDUST Research Fund(Grant No.2015KYTD104)
关键词 MSC (modified SUCTION caisson) RSC (regular SUCTION caisson) model tests MONOTONIC lateral loading DEFORMATION of SAND surface earth pressure distribution MSC(modified suction caisson) RSC(regular suction caisson) model tests monotonic lateral loading deformation of sand surface earth pressure distribution
  • 相关文献

参考文献3

二级参考文献13

共引文献38

同被引文献20

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部