摘要
Utilizing first-principles band structure method, we studied the trends of electronic structures and band offsets of the common-anion heterojunctions GaX/ZnGeX_2(X = N, P, As, Sb). Here, ZnGeX_2 can be derived by atomic transmutation of two Ga atoms in GaX into one Zn atom and one Ge atom. The calculated results show that the valence band maximums(VBMs) of GaX are always lower in energy than that of ZnGeX_2, and the band offset decreases when the anion atomic number increases. The conduction band minimums(CBMs) of ZnGeX_2 are lower than that of GaX for X = P, As, and Sb, as expected. However, surprisingly, for ZnGeN2, its CBM is higher than GaN. We found that the coupling between anion p and cation d states plays a decisive role in determining the position of the valence band maximum, and the increased electronegativity of Ge relative to Ga explains the lower CBMs of ZnGeX_2 for X = P, As, and Sb. Meanwhile, due to the high ionicity, the strong coulomb interaction is the origin of the anomalous behavior for nitrides.
Utilizing first-principles band structure method, we studied the trends of electronic structures and band offsets of the common-anion heterojunctions GaX/ZnGeX_2(X = N, P, As, Sb). Here, ZnGeX_2 can be derived by atomic transmutation of two Ga atoms in GaX into one Zn atom and one Ge atom. The calculated results show that the valence band maximums(VBMs) of GaX are always lower in energy than that of ZnGeX_2, and the band offset decreases when the anion atomic number increases. The conduction band minimums(CBMs) of ZnGeX_2 are lower than that of GaX for X = P, As, and Sb, as expected. However, surprisingly, for ZnGeN2, its CBM is higher than GaN. We found that the coupling between anion p and cation d states plays a decisive role in determining the position of the valence band maximum, and the increased electronegativity of Ge relative to Ga explains the lower CBMs of ZnGeX_2 for X = P, As, and Sb. Meanwhile, due to the high ionicity, the strong coulomb interaction is the origin of the anomalous behavior for nitrides.
基金
financially supported by the Major State Basic Research Development Program of China under Grant No2016YFB0700700
the National Natural Science Foundation of China(NSFC)under Grants Nos.11634003,11474273,61121491 and U153040
the Science Challenge Project,under Grant No.TZ20160003
supported by the National Young 1000 Talents Plan
supported by the Youth Innovation Promotion Association of CAS(No.2017154)