期刊文献+

冷水机组故障特征优化选择

Feature-optimizing selection for chiller fault detection and diagnosis
原文传递
导出
摘要 从现场应用的角度,针对冷水机组典型故障,提出了一种特征选择(FS)的方法,选择少量获取成本低的特征表征故障,达到以最低成本的传感器投入获得最优的故障检测与诊断(FDD)性能,从而节省FDD成本。首先,在现场应用的约束下,对64个原始特征进行特征初选,选择出传感器成本低和对故障敏感程度高的16个特征;然后,基于互信息的FS模型对这16特征进行特征中选,确定故障指示特征的最佳个数;最后,基于灰色聚类分析的FS模型再对这16特征进行特征终选,确定具体的特征种类。使用ASHRAE RP-1043故障实验数据和基于支持向量机的FDD工具验证了提出FS方法的有效性。 From the perspective of field applications, a feature selection(FS) method was proposed for chiller fault detection and diagnosis(FDD). The purpose was to obtain an optimal diagnostic performance and to save initial FDD costs. The technological paths were as follows: first, under the constraint of field applications, the original 64 features were selected preliminarily, 16 features obtained by low-cost sensors were selected;second, these 16 features were selected medially based on mutual information, in order to determine the optimal number of features describing the typical chiller faults;last, the specific feature subsets were determined based on grey clustering analysis. The experimental data from the ASHRAE RP-1043 and the FDD tool based on support vector machine were used to evaluate the proposed FS method.
作者 王占伟 王林 梁坤峰 袁俊飞 王智伟 Wang Zhanwei;Wang Lin;Liang Kunfeng;Tan Yingying;Wang Zhiwei(Institute of Refrigeration,Heat pump,and Air conditioning,Henan University of Science and Technology,Luoyang,471023,China;School of Environment,Xi'an University of Architecture and Technology,Xi'an 710055,China)
出处 《低温与超导》 CAS 北大核心 2019年第3期49-54,共6页 Cryogenics and Superconductivity
基金 国家自然科学基金(51806060 51876055)资助
关键词 冷水机组 特征选择 故障诊断 现场应用 Chiller Feature selection Fault diagnosis Field applications
  • 相关文献

参考文献3

二级参考文献28

  • 1朱大明,朱之丽.结合统计的模型辨识在发动机故障诊断中应用[J].航空动力学报,2009,24(5):1061-1065. 被引量:7
  • 2张岐山,郭喜江,邓聚龙.灰关联熵分析方法[J].系统工程理论与实践,1996,16(8):7-11. 被引量:232
  • 3谢乃明,刘思峰.几类关联度模型的平行性和一致性[J].系统工程,2007,25(8):98-103. 被引量:48
  • 4VEKATASUBRAMANIAN V, REGASWAMY R, YIN K, et al. A review of process fault detection and diagnosis Part I: Quantitative model - based methods [ J ]. Computers and Chemical Engineering, 2003, 27 : 293 - 311.
  • 5VEKATASUBRAMANIAN V, REGASWAMY R, KAVURI S N, et al. A review of process fault detection and diagnosis Part III: Process history based methods [ J ]. Computers and Chemial Engineering, 2003, 27:327 - 346.
  • 6VEKATASUBRAMANIAN V, REGASWAMY R, YIN K, KAVURI S N. A review of process fault detection and diagnosis Part II: Qualitative models and search strategies [ J]. Computers and Chemical Engineering, 2003, 27:313-326.
  • 7KATIPAMULA S, BRAMBLEY M R. Methods for Fault detection, Diagnostics, and Prognostics for Building Systems-A Review, Part I [ J ]. International Journal of Heating, Ventilating, Air Conditioning and Refrigerating Research, 2005, 11 : 3 - 25.
  • 8KATIPAMULA S, BRAMBLEY M R. Methods for Fault detection, Diagnostics, and Prognostics for Building Sys- tems- A Review, Part II [ J]. International Journal of Heating, Ventilating, Air Conditioning and Refrigerating Research, 2005, 11 : 169 - 187.
  • 9VAPNIK V N. The nature of statistical learning theory [M]. Springer-Verlag, New York, USA, 1999.
  • 10SAMANTA B. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms [ J ]. Mechanical System and Signal Process, 2004, 18:625-644.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部