摘要
如何提高学习资源的推荐准确度是自适应学习研究中的核心问题.为此,本文提出了一种基于异构信息网络的学习资源推荐算法.该算法以基于元路径的相似性度量为基础,结合知识转化概率和学习反馈信息,计算学习者与所有学习资源之间的语义相似度,并依据该相似度进行排名,将排名top-K的学习资源推荐给学习者.相关的实验表明,本文方法有效实现了自适应学习中学习资源的准确推荐.
How to improve the recommendation accuracy of learning resources is the core problem in the study of adaptive learning.Therefore,this paper proposes a learning resource recommendation algorithm based on heterogeneous information network. The algorithm based on the similarity measure based on meta path,combined with feedback information,know ledge transformation probability and calculate semantic similarity between all learners and learning resources,and according to the similarity,will be ranked top-K learning resources recommended for learners. The relevant experiments show that this method is effective in realizing the accurate recommendation of learning resources in adaptive learning.
作者
叶俊民
黄朋威
罗达雄
王志锋
陈曙
YE Jun-min;HUANG Peng-wei;LUO Da-xiong;WANG Zhi-feng;CHEN Shu(School of Computer, Central China Normal University, Wuhan 430079, China;School of Educational Information Technology, Central China Normal University, Wuhan 430079, China)
出处
《小型微型计算机系统》
CSCD
北大核心
2019年第4期726-732,共7页
Journal of Chinese Computer Systems
基金
国家社会科学基金一般项目(17BTQ061)资助
关键词
异构信息网络
自适应学习
学习资源推荐算法
heterogeneous information network
adaptive learning
learning resource recommendation algorithm