期刊文献+

一种自动分割股骨区域的R-U-Net神经网络 被引量:5

R-U-Net Neural Network for Automatic Segmentation of Femur Area
下载PDF
导出
摘要 针对目前X线片骨组织分割主要靠医生手工标记耗时且准确率不稳定的问题,本文以股骨为研究对象,提出一种结合深度残差网络和U-Net架构优势的R-U-Net神经网络,并将其应用于股骨区域自动分割.首先对原图像预处理后标注目标区域制作标签图,并对训练集进行数据增强;接着将其输入到R-U-Net神经网络训练调参,保存优化后的网络模型;最后将待分割的测试图像输入到保存的网络模型中得到股骨区域的轮廓,填充连通区域后进行自定义掩码操作得到股骨区域的分割结果.以PhotoShop人工分割结果作为参考,测试结果表明基于R-U-Net的分割效果优于传统方法和U-Net,能够实现批量股骨区域的自动分割,执行效率更高,分割效果更佳. In order to solve the problem of the time-consuming manual labelling and the unstable accuracy of the X-ray bone tissue,taking the femur as the research object,this paper presents the R-U-Net neural network combining deep residual network and U-Net architecture,and applies it to the automatic segmentation of femoral area. Firstly,after pre-processing of the original dataset,made the label images in the target area,and augmented the training dataset. Then,inputted it to the R-U-Net neural network for training and adjusting parameter,and saved the optimized network model. Finally inputted the test images to be segmented into the saved network model to obtain the outline of the femur area,and performed the mask operation after filling the connected area to obtain the femur area segmentation results. The results of artificial segmentation using PhotoShop as a reference,the test results of R-U-Net are superior to traditional and U-Net based segmentation methods. Realized the automatic segmentation of the mass femur area. It has better execution efficiency and segmentation effect.
作者 王亚刚 王萌 韩俊刚 贾阳 路玉峰 WANG Ya-gang;WANG Meng;HAN Jun-gang;JIA Yang;LU Yu-feng(School of Computer Science,Xian University of Posts and Telecommunications,Xi'an 710121,China;Bone and Joint Surgery,Xi'an Honghui Hospital,Xi'an 710054,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2019年第4期839-844,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61136002)资助 陕西省重点研发计划项目(2017GY-071)资助 西安邮电大学研究生创新基金项目(CXJJ2017037)资助
关键词 图像分割 R-U-Net 股骨 X线片 image segmentation R-U-Net femur X-Ray films
  • 相关文献

参考文献4

二级参考文献46

  • 1王忠谦,朱宁.基于三次样条插值的图像放大的离散算法[J].苏州大学学报(自然科学版),2005,21(2):7-11. 被引量:12
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3王彩芳,姜明.医学图像配准综述[J].CT理论与应用研究(中英文),2006,15(2):74-80. 被引量:4
  • 4BRADSKIG,KAEBLERA.学习OpenCV[M].于仕琪,刘瑞琪,译.北京:清华大学出版社,2009.
  • 5Pham DL, Xu Chenyang, Prince J. Current methods in medical image segmentation[J]. Annual Review of Biomedical Engineering, 2000, 2(8): 315-337.
  • 6Suri JS, Singh S, Liu K, et al. Shape recovery algorithms using level sets in 2-D/3-D medical imagery: A state-of-art review [J]. IEEE Trans on Information Technology in Biomedicine, 2002,6( 1 ) : 8 - 28.
  • 7McInernay T, Terzopuoulos, D. Deformable models in medical image analysis: A survey [J]. Medical Image Analysis, 1996, 1 (2) :91 - 108.
  • 8Niessen WJ, Pomeny BMT, Viergever M A. Geodesic deformable models for medical image analysis [J].IEEE Trans on Medical Imaging, 1998,17(2) :634 - 641.
  • 9Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: A level set approach [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158- 175.
  • 10Cootes TF, Taylor C J, Cooper DH, et al . Active shape model-their training and application [ J ]. Computer Vision and Image Understanding, 1995,61( 1 ) :38 - 59.

共引文献46

同被引文献14

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部