期刊文献+

一种新颖的花朵授粉优化算法及收敛性分析 被引量:4

A Novel Flower Pollination Optimization Algorithm and Its Convergent Analysis
原文传递
导出
摘要 针对现有花朵授粉算法存在易早熟、寻优精度不高、搜索效率低下等问题,研究设计了一种改进的花朵授粉算法。该算法利用逻辑自映射函数对花粉粒进行混沌扰动,使缺乏变异机制的花粉粒集具有较强的自适应能力,有效地防止了算法后期最优解趋同的现象。利用变换算子对搜索空间进行动态收缩,使算法在寻优过程中保持较高的种群多样性,降低算法陷入局部极值的概率,从而提高算法的搜索效率和寻优精度。同时,结合花朵授粉的生物学特征,从机理上描述了改进后算法的具体实现步骤,对算法的收敛性和寻优性能进行了详细的剖析,并采用实数编码的方法分析了算法的收敛性,给出了算法的生物学模型和理论基础。实验结果表明,改进后的算法具有较好的性能。 In order to deal with the deficiencies of the existing flower pollination algorithm such as the prematurity problem, low optimization accuracy , inefficient searching capacity, etc., this paper proposes a newly-revised flower pollination algorithm. The self-logical mapping function is used to carry on the chaotic disturbance to the pollen grains in the proposed algorithm, which can make the defective variation mechanism have strong adaptive capacities, and avoid the later potential homogeneity phenomenon of the optimal solutions. The use of the transformation operator to dynamically shrink the search space can keep the diversity of the population and reduce the probability of getting into the local extremum in the process of optimization, thus improving the searching efficiency and degree of accuracy of the algorithm. Meanwhile, in combination with the biological characteristics of flower pollination. a mechanistic description of the specific implementation steps of the improved flower pollination algorithm is given, and the convergence property and optimization performance of the algorithm are analyzed. The method of real number encoding is used to further analyze the convergence of the algorithm, thus the biological model and theoretical basis of the algorithm are supplied. The experimental results show that the algorithm proposed in this paper has a better performance.
作者 杨枫 叶春明 姚远远 YANG Feng;YE Chunming;YAO Yuanyuan(Business School, University of Shanghai for Science and Technology , Shanghai 200093, China;College of Management, Henan University of Traditional Chinese Medicine,Zhengzhou 450046, China)
出处 《系统工程理论方法应用》 CSSCI CSCD 北大核心 2019年第2期321-330,共10页 Systems Engineering Theory·Methodology·Applications
基金 国家自然科学基金资助项目(71271138) 教育部人文社会科学研究青年基金项目资助(18YJCZH216) 河南省政府决策研究招标课题资助项目(2018B461) 河南省教育科学"十三五"规划一般课题资助项目((2018)-JKGHYB-0129)
关键词 花朵授粉算法 全局收敛 混沌搜索 函数优化 flower pollination algorithm (FPA) global convergence chaotic search function optimization
  • 相关文献

参考文献4

二级参考文献72

  • 1高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15. 被引量:104
  • 2相征,张太镒,孙建成.基于混沌吸引子的快衰落信道预测算法[J].西安电子科技大学学报,2006,33(1):145-149. 被引量:11
  • 3高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:76
  • 4KENNEDY J, EBERHART R. Particle swarm optimization [ C ]// Proc of IEEE International Conference on Neural Networks. 1995: 1942-1948.
  • 5SHI Yu-hui, EHERHART R C. Empirical study of particle swarm optimization [ C ]//Proc of Congress on Evolutionary Computation. 1999 : 1945-1950.
  • 6LIU Sheng-song, HOU Zhi-jian. Weighted gradient direction based chaos optimization algorithm for nonlinear programming problem [ C]//Proc of the 4th World Congress on Intelligent Control and Automation. 2002 : 1779-1783.
  • 7SHI Yu-hui, EHERHART R C. A modified particle swarm optimizer [ C ]//Proc of IEEE International Conference on Computational Intelligence. 1998:69- 73.
  • 8ANGELINE P J. Using selection to improve particle swarm optimization [ C ]//Proe of IEEE International Conference on Evolutionary Computation. 1998:84-89.
  • 9XIE Xiao-feng. ZHANG Wen-jun, YANG Zhi-lian. Hyhrid particle swarm optimizer with mass extinction [ C ]//Proc of IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions. 2002 : 1170-1173.
  • 10YASUDA K, IWASAKI N, IDEA. Adaptive particle swarm optimization[ C]//Proc of IEEE International Conference on Systems, Man and Cybernetics. 2003 : 1554-1559.

共引文献142

同被引文献44

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部