期刊文献+

Suspension Splittings and Self-maps of Flag Manifolds

Suspension Splittings and Self-maps of Flag Manifolds
原文传递
导出
摘要 If G is a compact connected Lie group and T is a maximal torus, we give a wedge decomposition of ΣG/T by identifying families of idempotents in cohomology. This is used to give new information on the self-maps of G/T. If G is a compact connected Lie group and T is a maximal torus, we give a wedge decomposition of ΣG/T by identifying families of idempotents in cohomology. This is used to give new information on the self-maps of G/T.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第4期445-462,共18页 数学学报(英文版)
基金 supported by KAKENHI,Grant-in-Aid for Scientific Research(C)(Grant No.18K03304)
关键词 FLAG MANIFOLD self-map stable SPLITTING Flag manifold self-map stable splitting
  • 相关文献

参考文献1

二级参考文献8

  • 1Borel, A.: Sur la cohomologie des espaces fibers principaux et des espaces homogenes de groupes de Liecompacts. Ann. of Math.. 57, 115-207 (1953).
  • 2Duan, H. B., Zhao: X. A.: The classification of cohomology endomorphisms of certain flag manifolds. Pacific Journal of Mathematics, 192, 93-102 (2000).
  • 3Zhao, X. A.: Cohomology endomorphisms of flag manifolds. Acta Mathematica Sinica, 44(6), 1099-1106(2001), (In Chinese).
  • 4Hans, J. Baues: Obstruction theory, Lecture notes in Mathematics, Springer-Verlag, 628, 1977.
  • 5Rutter, J. W.: A homotopy classification of maps into an induced fibre space. Topology, 6, 379-403 (1967).
  • 6Whitehead, G. W.: Elements of homotopy theory, Springer-Verlag, 1978.
  • 7Eckmann, B., Hilton, P. J.: Operators and cooperators in homotopy theory. Math. Annalen, 141, 1-21(1960).
  • 8Glover, H., Homer. W.: Self-maps of flag manifolds. Trans of AMS, 267, 423-434 (1981).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部