期刊文献+

Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements 被引量:1

Strong Laws of Large Numbers for Double Sums of Banach Space Valued Random Elements
原文传递
导出
摘要 For a double array {V_(m,n), m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p(1 ≤ p ≤ 2) Banach space and an increasing double array {b_(m,n), m ≥1, n ≥ 1} of positive constants, the limit law ■ and in L_p as m∨n→∞ is shown to hold if ■ This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space. For a double array {V_(m,n), m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p(1 ≤ p ≤ 2) Banach space and an increasing double array {b_(m,n), m ≥1, n ≥ 1} of positive constants, the limit law ■ and in L_p as m∨n→∞ is shown to hold if ■ This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 < p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第5期583-596,共14页 数学学报(英文版)
关键词 Real separable BANACH SPACE DOUBLE array of independent random elements strong law of large numbers almost sure CONVERGENCE Rademacher type p BANACH SPACE CONVERGENCE in Lp Real separable Banach space double array of independent random elements strong law of large numbers almost sure convergence Rademacher type p Banach space convergence in L_p
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部