期刊文献+

Bayesian Estimation of Large Precision Matrix Based on Cholesky Decomposition 被引量:2

Bayesian Estimation of Large Precision Matrix Based on Cholesky Decomposition
原文传递
导出
摘要 In this paper, we consider the estimation of a high dimensional precision matrix of Gaussian graphical model. Based on the re-parameterized likelihood, we obtain the full conditional distribution of all parameters in Cholesky factor. Furthermore, by imposing the prior information, we obtain the shrinkage Bayesian estimator of large precision matrix, and establish the asymptotic distribution of all parameters in the Cholesky factor. At last, we demonstrate our method through the simulation study and an application to telephone call center data. In this paper, we consider the estimation of a high dimensional precision matrix of Gaussian graphical model. Based on the re-parameterized likelihood, we obtain the full conditional distribution of all parameters in Cholesky factor. Furthermore, by imposing the prior information, we obtain the shrinkage Bayesian estimator of large precision matrix, and establish the asymptotic distribution of all parameters in the Cholesky factor. At last, we demonstrate our method through the simulation study and an application to telephone call center data.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第5期619-631,共13页 数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(Grant No.11571080)
关键词 BAYESIAN estimation Cholesky DECOMPOSITION GRAPHICAL model SHRINKAGE Bayesian estimation Cholesky decomposition graphical model shrinkage
  • 相关文献

参考文献2

二级参考文献44

  • 1Fan, J. Q., Li, R. Z.: Variable selection via nonconcave penalized likelihood and its oracle properties. J.Amer. Statist. Assoc., 96, 1348-1360 (2001).
  • 2Fan, J. Q., Li, R. Z.: New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. J. Amer. Statist. Assoc., 99, 710-723 (2004).
  • 3Fan, J. Q., Lv, J.: Sure independence screening for ultra-high dimensional feature space (with discussions).J. Roy. Statist. Soc. Ser. B, 70, 849-911 (2008).
  • 4Li, R. Z., Liang, H.: Variable selection in semiparametric regression modeling. Ann. Statist., 36, 261-286(2008).
  • 5Lin, X. H., Carroll, R. J.: Semiparametric regression for clustered data using generalized estimating equations.J. Amer. Statist. Assoc., 96, 1045-56 (2001).
  • 6Ni, X., Zhang, H., Zhang, D. W.: Automatic model selection for partially linear models. J. Multivariate Anal., 100, 2100-2111 ( 2009).
  • 7Ni, X., Zhang, D. W., Zhang, H.: Variable selection for semiparametric mixed models in longitudinal studies. Biometrics, 66, 79-88 (2010).
  • 8Schumaker, L. L.: Spline Functions, Wiley, New York, 1981.
  • 9Wang, L., Li, H., Huang, J. Z.: Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. J. Amer. Statist. Assoc., 103, 1556-1569 (2008).
  • 10Wang, H., Li, R., Tsai, C.: Tuning parameter selectors for the smoothly clipped absolute deviation method.Biometrika, 94, 553-568 (2007).

同被引文献26

引证文献2

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部