期刊文献+

Reducing energy barriers of chemical reactions with a nanomicrocell catalyst consisting of integrated active sites in conductive matrices

Reducing energy barriers of chemical reactions with a nanomicrocell catalyst consisting of integrated active sites in conductive matrices
原文传递
导出
摘要 Reducing energy barriers of chemical reactions is the never-ending endeavor of chemists.Inspired by the high reactivity of primary cells,we develop a nanosized fuel cell catalyst(denoted as nanomicrocell catalyst),consisting of integrated electrode pairs,conductive matrices and electrolytes,to improve the chemical reactivity.Specifically,the anodes are Pd species which is combining with the electron-rich N atoms in B-and-N co-doped carbon dots;the cathodes are electron-deficient B atoms;and the conductive matrices are B-and-N co-doped carbon dots which are connecting with the electrode pairs.Similar to the reactivity of primary cells,the catalytic properties of the nanomicrocell catalyst in hydrogenation of benzaldehyde are depending on the properties of electrode pairs,conductive matrices and electrolytes.The unique catalytic properties are attributed to the different substrate adsorption capability and catalytic properties of paired electrodes,and the easy migration of electrons and charge carriers,which could improve the synergetic effect between paired active sites.Therefore,this work may open up a new window for designed synthesis of advanced catalysts which could highly lower the energy barriers of chemical reactions. Reducing energy barriers of chemical reactions is the never-ending endeavor of chemists.Inspired by the high reactivity of primary cells,we develop a nanosized fuel cell catalyst(denoted as nanomicrocell catalyst),consisting of integrated electrode pairs,conductive matrices and electrolytes,to improve the chemical reactivity.Specifically,the anodes are Pd species which is combining with the electron-rich N atoms in B-and-N co-doped carbon dots;the cathodes are electron-deficient B atoms;and the conductive matrices are B-and-N co-doped carbon dots which are connecting with the electrode pairs.Similar to the reactivity of primary cells,the catalytic properties of the nanomicrocell catalyst in hydrogenation of benzaldehyde are depending on the properties of electrode pairs,conductive matrices and electrolytes.The unique catalytic properties are attributed to the different substrate adsorption capability and catalytic properties of paired electrodes,and the easy migration of electrons and charge carriers,which could improve the synergetic effect between paired active sites.Therefore,this work may open up a new window for designed synthesis of advanced catalysts which could highly lower the energy barriers of chemical reactions.
出处 《Science Bulletin》 SCIE EI CAS CSCD 2019年第6期385-390,共6页 科学通报(英文版)
基金 supported by the National Natural Science Foundation of China(21373180,21525312,and 21872122)
关键词 Nanomicrocell CATALYSTS CONDUCTIVE MATRICES Electrode PAIRS Electrolytes Primary cells Nanomicrocell catalysts Conductive matrices Electrode pairs Electrolytes Primary cells
  • 相关文献

参考文献3

二级参考文献14

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部