期刊文献+

Experimental Investigation of the Mg–Zn–Zr Isothermal Section at 400 °C

Experimental Investigation of the Mg–Zn–Zr Isothermal Section at 400 °C
原文传递
导出
摘要 Mg-Zn-Zr series Mg alloys(ZK) are one of the most important commercial Mg alloys due to their good comprehensive mechanical properties. The phase equilibria of the Mg-Zn-Zr system at 400 ℃ covering the overall composition range were investigated by X-ray diffraction and electron probe microanalyses on thirteen ternary alloys. Three ternary compounds, τ_1, τ_2 and τ_3, were detected to be thermodynamically stable at 400 ℃, and their homogeneity range was determined to be Mg_((7-17))Zn_((80-88))Zr_((4-6)), Mg_((15-22))Zn_((66-65))Zr_((9-16)) and Mg_9 Zn_(68)Zr_(23)(in at.%), respectively. Eight three-phase regions and four two-phase regions were observed. The maximum solubility of Mg in Zn_(22) Zr, Zn_(39) Zr_5 and Zn_3 Zr phases was measured to be 0.52, 0.37 and 0.99 at.%, respectively, while the solubility of Zr in MgZn_2 and Mg_2 Zn_3 phases is negligible. The isothermal section of the Mg-Zn-Zr system at 400 ℃ was then constructed based on the present experimental data. Mg-Zn-Zr series Mg alloys(ZK) are one of the most important commercial Mg alloys due to their good comprehensive mechanical properties. The phase equilibria of the Mg-Zn-Zr system at 400 ℃ covering the overall composition range were investigated by X-ray diffraction and electron probe microanalyses on thirteen ternary alloys. Three ternary compounds, τ_1, τ_2 and τ_3, were detected to be thermodynamically stable at 400 ℃, and their homogeneity range was determined to be Mg_((7-17))Zn_((80-88))Zr_((4-6)), Mg_((15-22))Zn_((66-65))Zr_((9-16)) and Mg_9 Zn_(68)Zr_(23)(in at.%), respectively. Eight three-phase regions and four two-phase regions were observed. The maximum solubility of Mg in Zn_(22) Zr, Zn_(39) Zr_5 and Zn_3 Zr phases was measured to be 0.52, 0.37 and 0.99 at.%, respectively, while the solubility of Zr in MgZn_2 and Mg_2 Zn_3 phases is negligible. The isothermal section of the Mg-Zn-Zr system at 400 ℃ was then constructed based on the present experimental data.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第4期426-432,共7页 金属学报(英文版)
基金 The financial supports from the National Key Research and Development Plan (No. 2016YFB0701202) the National Natural Science Foundation of China (Grant No. 51771235)
关键词 Mg–Zn–Zr ISOTHERMAL section Phase EQUILIBRIA TERNARY compounds Mg–Zn–Zr Isothermal section Phase equilibria Ternary compounds
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部