期刊文献+

基于电感式磁传感器的车位检测算法设计 被引量:4

Design of Vehicle Detection Algorithm Based on Inductive Magnetic Sensor
下载PDF
导出
摘要 截至2018年底,我国汽车保有量已经超过了2亿辆,而城市停车位数量增长远远不及汽车保有量,帮助车主及时获取空余车位分布情况,对缓解由寻找停车位引发的交通堵塞和环境污染十分有效。设计并实现了一种车位检测方法,使用PNI公司的精密三轴电感式磁传感器RM3001,配合PNI12927驱动芯片进行磁场测量,同时将停车位状态转换抽象为隐马尔可夫模型,基于隐马尔可夫模型的特点设计车位检测算法,在MSP430低功耗单片机上实现,从采集到的磁场信号中提取可用特征,判断当前车位是否有车停入或车辆驶出。经过长时间实践验证,该算法获得了较高的准确率,实现了车位检测的目标。 By the end of 2018,China ’ s car ownership has exceeded 200 million,whereas the number of urban parking spaces has grown far less than car ownership. The timely acquisition of spare parking spaces by car owners is very effective in relieving traffic congestion and environmental pollution caused by parking spaces. This paper designs and implements a parking space detection node,which uses PNI’ s precision three-axis inductive magnetic sensor RM3001,with PNI12927 driver chip for magnetic field measurement,meanwhile,we abstract the parking space state into a Hidden Markov Model. The parking space detection algorithm is implemented on the MSP430 low-power single-chip microcomputer based on the characteristics of the Hidden Markov Model. The available features are extracted from the acquired magnetic field signals to determine whether the current parking space has a car parked or the vehicle is driven out. After a long period of time ’ s practical tests,the algorithm achieves a high accuracy and achieves the goal of parking space detection.
作者 李凤 董胜 刘守印 LI Feng;DONG Sheng;LIU Shouyin(College of Physical Science and Technology,Central China Normal University,Wuhan 430079,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2019年第4期542-548,共7页 Chinese Journal of Sensors and Actuators
关键词 电感式磁传感器 车位检测 隐马尔可夫模型 MSP430 inductive magnetic sensor parking detection Hidden Markov Model MSP430
  • 相关文献

参考文献8

二级参考文献48

  • 1姜启源.数学模型[M].北京:高等教育出版社,1998.503-510.
  • 2Lee S, Oh S C, Son B. Heuristic algorithm for traffic condition classification with loop detector data[ C ]//2005 International Conference Proceedings on Computational Science and Its Applications ,2005:816 -821.
  • 3EI-Geneidy A M, Ahmed M,Bertini R L. Toward validation of freeway loop detector speed measurements using Transit probe data[C]//7th International IEEE Conference Proceedings on Intelligent Transportation Systems,2004:779 -784.
  • 4Coifman B, Ergueta E. Improved vehicle reidentification and travel time measurement on congested freeways[J]. Journal of Transportation Engineering ,2003,129 (5) :475-483.
  • 5Zhang X P, Nihan N L, Wang Y H. Improved dual-loop detection system for collecting real-time truck data [ J ]. Transportation Research Record ,2005 ( 1917 ) : 109 -115.
  • 6Weng G Q,He T N,Chen M J,et al. The vehicle' s classification recognition system based on DTW algorithm[C]//5th World Congress Proceedings on Intelligent Control and Automation, 2004: 4169 -4171.
  • 7Abdel-Aty M, Pande A. Identifying crash propensity using specific traffic speed conditions [ J ]. Journal of Safety Reasearch, 2005, 36(1) :97 -108.
  • 8Tao J S,Chen S X,Yang L,et al. Ultrasonic technique based on neural networks in vehicle modulation recognition[ C ]//7th International IEEE Conference Proceedings on Intelligent Transportation Systems ,2004:201 -204
  • 9Tong F,Tso S K, Xu T Z. A high precision ultrasonic docking system used for automatic guided vehicle [ J ]. Sensor and Actuators A,2005,118 (2) :183 -189.
  • 10Kim I S,Jeong K,Jae K J. Two novel radar vehicle detectors for the replacement of a conventional loop detector [ J ]. Microwave Journal ,2001,44 ( 7 ) :22 -40.

共引文献157

同被引文献31

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部