期刊文献+

基于非负矩阵分解和复杂网络的肌间耦合分析 被引量:4

Intermuscular Coupling Analysis Based on Non-negative Matrix Factorization and Complex Networks
下载PDF
导出
摘要 目的利用表面肌电信号,探究多块肌肉之间的信息传递关系和不同握力下的肌肉之间的耦合特性。方法采集6名健康受试者在不同握力下的表面肌电信号,首先用广义偏定向相干计算多通道肌肉之间的相干性;然后用非负矩阵分解算法将相干性进行分解;最后用复杂网络建立不同条件下的肌肉功能网络,利用图论的方法,定量分析肌肉功能网络的连接特性。结果不同握力下肌肉的激活程度存在显著性差异;肌间耦合在10~20Hz频段上较为显著,且在10~20Hz频段上耦合程度随着握力的增加呈现显著性变化。结论肌间耦合在不同频段和不同握力下呈现显著性不同,表明了中枢神经系统维持不同握力的控制模式,本文方法为诊断运动功能障碍和评价康复效果提供了依据。 Objective To explore the relationship of information transmission between multiple muscles and the intermuscular coupling characteristics under different grip strengths with surface electromyography(sEMG).Methods Six healthy subjects were asked to perform grip under different strengths,and sEMG were collected from 7 muscles.Firstly,the coherence between multi-channel muscles was calculated by Generalized Partial Directed Coherence.Then the coherence was decomposed by NMF.Finally,CN was used to establish the muscle function network under different conditions.Results It was found that there was a significant difference in the activation degree of muscles under different grip strengths;the intermuscular coupling was more significant in the 10~20 Hz band;and the coupling degree in the 10~20 Hz band showed a significant change with the increase of the grip strength.ConclusionIntermuscular coupling is significantly different in different frequency bands and different grip strengths,indicating that the central nervous system maintains different grip strength control modes,which provides a basis for the diagnosis and rehabilitation evaluation of motor dysfunction.
作者 黄威 高云园 张迎春 佘青山 马玉良 Huang Wei;Gao Yunyuan;Zhang Yingchun;She Qingshan;Ma Yuliang(Intelligent Control & Robotics Institute, Hangzhou Dianzi University, Hangzhou Zhejiang 310018, China)
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2019年第2期159-166,共8页 Space Medicine & Medical Engineering
基金 国家自然科学基金(61871427) 浙江省自然科学基金(LY18F030009) 杭州电子科技大学科研创新基金(CXJJ2018089)
关键词 肌间耦合 广义偏定向相干 非负矩阵分解 复杂网络 intermuscular coupling generalized partial directed coherence nonnegative matrix factorization complex network
  • 相关文献

参考文献8

二级参考文献174

  • 1王文志.中国脑卒中流行病学特征和社区人群干预[J].中国医学前沿杂志(电子版),2009,1(2):49-53. 被引量:71
  • 2Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 3Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 4He X F, Yan S C, Hu Y X, Niyogi P, Zhang H J. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 5Yang M H. Kernel eigenfaces vs. kernel fisherfaces: face recognition using kernel methods. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. Washington, DC: IEEE, 2002. 215-220.
  • 6Yang J, Zhang D, Frangi A F, Yang J Y. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.
  • 7Li M, Yuan B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 2005, 26(5): 527-532.
  • 8Chen S B, Zhao H F, Kong M, Luo B. 2D-LPP: a two-dimensional extension of locality preserving projections. Neurocomputing, 2007, 70(4-6): 912-921.
  • 9Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755): 788-791.
  • 10Zhang T P, Fang B, Tang Y Y, He G H, Wen J. Topology preserving non-negative matrix factorization for face recognition. IEEE Transactions on Image Processing, 2008, 17(4): 574-584.

共引文献191

同被引文献32

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部