期刊文献+

基于压缩感知的两阶段多目标定位算法 被引量:1

Two-phase Multi-target Localization Algorithm Based on Compressed Sensing
下载PDF
导出
摘要 针对传感器网络中基于接收信号强度(Received Signal Strength,RSS)的多目标定位具有天然稀疏性的问题,提出了基于压缩感知的两阶段多目标定位算法,该算法将基于网格的多目标定位问题分解为粗定位和细定位两个阶段。粗定位阶段,根据序贯压缩感知原理确定最优观测次数,然后利用l_p最优化问题重构出目标所在的初始候选网格;细定位阶段,由四分法不断划分候选网格,根据最小残差原则估计目标在候选网格中的确切位置。仿真结果表明,相较于传统的基于l_1最优化的多目标定位算法,基于压缩感知的两阶段多目标定位算法在目标个数未知的场景下具有更优的定位性能,且明显减少了定位时间。 The RSS-based multi-target location has the natural property of the sparsity in wireless sensor networks.In this paper,a two-phase multi-target localization algorithm based on compressed sensing was proposed.This algorithm divides the grid-based target localization problem into two phases:coarse location phase and fine location phase.In the coarse location phase,the optimal number of measurements is determined according to the sequential compressed sen-sing,and then the locations of the initial candidate grids are reconstructed by l p optimization.In the fine location phase,all candidate grids are continually divided by quadripartition method,and the accurate locations of targets in the corresponding candidate grids are estimated by using the minimum residual principle.Compared with the traditional multi-target localization algorithm using l 1 optimization,the simulation results show that the proposed localization algorithm has better localization performance when the number of targets is unknown.Meanwhile,the localization time is significantly reduced.
作者 李秀琴 王天荆 白光伟 沈航 LI Xiu-qin;WANG Tian-jing;BAI Guang-wei;SHEN Hang(School of Computer Science and Technology,Nanjing Tech University,Nanjing 211816,China)
出处 《计算机科学》 CSCD 北大核心 2019年第5期50-56,共7页 Computer Science
基金 国家自然科学基金青年科学基金项目(61501224 61502230) 江苏省自然科学基金(BK20150960 BK2010548) 江苏省普通高校自然科学研究项目(15KJB520015) 江苏省研究生科研与实践创新计划项目(SJCX18_0339)资助
关键词 无线传感器网络 多目标定位 压缩感知 序贯压缩感知 稀疏重构 Wireless sensor networks Multi-target location Compressed sensing Sequential compressed sensing Sparse reconstruction
  • 相关文献

参考文献4

二级参考文献57

  • 1[1]Ko Y B, Vaidya N H. Location-aided routing(LAR) for mobile ad-hoc networks [EB/OL]. http://www.theory.lcs.mit.edu/classes/6.895/fall02/papers/Vaidya/winet-p307-ko.pdf, 1998-10-25.
  • 2[2]Fuller R, Fudurich E, Weiler F E. GPS without selective availability [EB/OL]. http://www.datum.com/pdfs/GPSWIPI.PDF,2000-05-10.
  • 3[3]Moeglein M, Krasner M. An introduction to Snap TrackTM server-aided GPS technology [EB/OL]. http://www.snaptrack.com/pdf/ion.pdf,1998-04-20.
  • 4[4]Werb J, Lanzl C. Designing a positioning system for finding things and people Indoors [J]. IEEE Spectrum, 1998,35(9): 71-78.
  • 5[5]Patwari N, Wang Y W, O'Dea B. Relative location in wireless networks [EB/OL]. http://www.personal.engin.umich.edu/~npatwari/Paper565.pdf,2001-09-18.
  • 6LASKA J, KIROLOS S, MASSOUD Y,et al. Random sampling for analog-to-information conversion of wideband signals [ C ]. IEEE Dallas Circuits and Systems Workshop, Richardson, TX, USA ,2006,119-122.
  • 7TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans. on Information Theory, 2007,53 ( 12 ) : 4655-4666.
  • 8NEEDELL D, VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit [ J ]. IEEE Journal of Selected Topics in Signal Processing,2010,4(2) :310-316.
  • 9DAI W, MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[ J]. IEEE Trans. on Information Theory,2009,55 (5) :2230-2249.
  • 10NEEDELL D, TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples [ J ]. Applied and Computational Harmonic Analysis, 2009, 26 ( 3 ) :301-321.

共引文献101

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部