期刊文献+

一种面向云计算群组优化时效改进的学习模型 被引量:1

Improved Learning Model for Cloud Computing Swarm Optimization Time Efficiency
下载PDF
导出
摘要 针对传统的云计算调度模型对任务调度求解时间长的缺陷,提出一种结合差分进化的改进的新蝙蝠算法(Optimized Novel Bat Algorithm,ONBA)优化算法来获取任务的调度数据。利用该调度数据对改进的改进的深度信念网络(Improved Deep Belief Network,IDBN)模型进行训练,通过对训练学习率和训练次数的自适应调优来实现训练时效的提高,从而实现对云计算调度结果的快速准确预测。实验结果表明,应用该方法训练完成的改进IDBN模型进行调度时,在保证预测群组优化结果准确的前提下,其能够有效缩短云计算的实际调度时间,弥补了传统群组优化模型调度耗时的缺陷。 Aiming at the time-consuming problem when the traditional task scheduling models of cloud computing deal with the tasks,this paper proposed an ONBA algorithm combining DE(Differential Evolution)to get the scheduling data of task.Then,the obtained scheduling data are used to train the improved IDBN model.By adjusting the learning rate and training times,the time efficiency can be improved,thus achieving fast and accurate prediction of cloud computing scheduling results.The experimental results show that the improved IDBN model trained by this method can effectively shorten the actual scheduling time on the premise of ensuring precise prediction results and make up for the defect of long running time in traditional swarm optimization models.
作者 简琤峰 况祥 张美玉 JIAN Cheng-feng;KUANG Xiang;ZHANG Mei-yu(Computer Science and Technology College,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《计算机科学》 CSCD 北大核心 2019年第5期290-297,共8页 Computer Science
基金 国家自然基金面上项目(61672461 61672463)资助
关键词 云计算 调度预测 深度学习 学习率 Cloud computing Scheduling forecast Deep learning Learning rate
  • 相关文献

参考文献4

二级参考文献34

  • 1徐春梅,尔联洁,刘金琨.动态模糊神经网络及其快速自调整学习算法[J].控制与决策,2005,20(2):226-229. 被引量:16
  • 2李义宝,张学勇,马建国,汪力君.基于BP神经网络的改进算法研究[J].合肥工业大学学报(自然科学版),2005,28(6):668-671. 被引量:24
  • 3胡建秀,曾建潮.二阶振荡微粒群算法[J].系统仿真学报,2007,19(5):997-999. 被引量:21
  • 4刘书雷,刘云翔,张帆,唐桂芬,景宁.一种服务聚合中QoS全局最优服务动态选择算法[J].软件学报,2007,18(3):646-656. 被引量:146
  • 5R. Hunter, The why of cloud, http://www.gartner.corn/ DisplayDocument?doc_cd=226469&ref-- g_noreg, 2012.
  • 6M. D. Dikaiakos. D. Katsaros, E Mchra, G. Pallis, and A. Vakali, Cloud computing: Distributed internet computing for IT and scientific research, lntemet Computing, vol. 13, no.5, pp. [ 0- [ 3, Sept.-Oct. 2009.
  • 7P. Mell and T. Grance, The NIST definition of cloud computing, http://csrc.nist.gov/publications/nistpubs/800- 145/SP800-145.pdf, 2012.
  • 8Microsoft Academic Research, Cloud computing, http:// libra.nlsra.cn/Keyword/605 l/cloud-computing?query= cloud 20computing. 2012.
  • 9Google Trends, Cloud computing, http://www.google. com/trends/exph)re#q=cloud%20conlputing. 2012.
  • 10N. G. Shivrzltri, P'. Krueger, and" M. SinghaI, Load distributing for locally distributed systems. Contputer, wl. 25. no. 12. pp. 33-44. Dec. 1992.

共引文献15

同被引文献20

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部