期刊文献+

融合主题模型和卷积神经网络的APP推荐研究 被引量:3

APP Recommendation Study Based on Fusion Topic Model and Convolution Neural Network
下载PDF
导出
摘要 [目的/意义]将主题模型与卷积神经网络进行结合,以实现APP的个性化推荐,并缓解评分数据稀疏性问题。[方法/过程]提出TMCNN模型,针对文本内容,通过用户和APP双通道的卷积神经网络获取卷积语义特征,同时使用LDA模型获取主题特征,并与用户和APP的数值特征组合,从而预测用户对APP的评分,进而推荐。[结果/结论]通过360手机助手数据集的测试,从RMSE,召回率,NDCG三个指标进行分析,TMCNN模型不仅具有良好的评分预测效果,而且APP的推荐结果也相对较好。同时,TMCNN模型也丰富了APP推荐的研究方法。[局限]没有考虑APP的权限信息,评论信息的有用性,以及TMCNN模型的优化函数有待改进。 [Purpose/significance]This paper combines topic model and convolutional neural network to achieve APP personalized recommendation and mitigate rating data sparsity issues.[Method/process] The paper proposes TMCNN model. For the text content,the paper obtains convolution semantic features through users and APP dual-channel convolution neural network. At the same time, LDA is used to acquire topic features. Then, the paper connects them with numerical features of users and APP. Finally,the paper uses these features to predict the user’s rating on APP,and then recommend.[Result/conclusion]Through the test on 360 mobile assistant dataset,TMCNN model does well in rating prediction and APP recommendation results from the perspective of RMSE,recall and NDCG indicators. Meanwhile,TMCNN enriches the research methods of APP recommendation.[Limitations]The paper does not consider permission information of APP,the usefulness of comment information,and the optimization function of TMCNN model also needs to be improved.
作者 王杰 唐菁荟 王昊 邓三鸿 Wang Jie
出处 《情报理论与实践》 CSSCI 北大核心 2019年第4期158-165,共8页 Information Studies:Theory & Application
基金 国家自然科学基金青年项目"面向学术资源的TSD与TDC测度及分析研究"(项目编号:71503121) 南京大学优质课程建设项目示范性精品课程"信息检索"(项目编号:IM2017A004)的研究成果
关键词 APP推荐 LDA模型 卷积神经网络 主题模型 APP recommendation LDA model convolution neural network topic model
  • 相关文献

参考文献2

二级参考文献27

  • 1H Y Tan. Chinese place automatic recognition research. In: C N Huang, Z D Dong, eds. Proc of Computational Language.Beijing: Tsinghua University Press, 1999
  • 2Zhang Huaping, Liu Qun, Zhang Hao, et al. Automatic recognition of Chinese unknown words recognition. First SIGHAN Workshop Attached with the 19th COLING, Taipei, 2002
  • 3S R Ye, T S Chua, J M Liu. An agent-based approach to Chinese named entity recognition. The 19th Int'l Conf on Computational Linguistics, Taipei, 2002
  • 4J Sun, J F Gao, L Zhang, et al. Chinese named entity identification using class-based language model. The 19th Int'l Conf on Computational Linguistics, Taipei, 2002
  • 5Lawrence R Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proc of IEEE, 1989,77(2): 257~286
  • 6Shai Fine, Yoram Singer, Naftali Tishby. The hierarchical hidden Markov model: Analysis and applications. Machine Learning,1998, 32(1): 41~62
  • 7Richard Sproat, Thomas Emerson. The first international Chinese word segmentation bakeoff. The First SIGHAN Workshop Attached with the ACL2003, Sapporo, Japan, 2003. 133~143
  • 8J Hockenmaier, C Brew. Error-driven learning of Chinese word segmentation. In: J Guo, K T Lua, J Xu, eds. The 12th Pacific Conf on Language and Information, Singapore, 1998
  • 9Andi Wu, Zixin Jiang. Word segmentation in sentence analysis.1998 Int'l Conf on Chinese Information Processing, Beijing, 1998
  • 10D Palmer. A trainable rule-based algorithm for word segmentation. The 35th Annual Meeting of the Association for Computational Linguistics (ACL'97), Madrid, 1997

共引文献240

同被引文献60

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部