摘要
传统机器人定位系统采用非对称双边双向测距技术实现机器人自主定位,没有考虑最优路径的选取,具有灵活性差、精度低的缺陷。设计基于激光测量的机器人智能定位系统,系统硬件包括环境感知子系统,数据处理子系统、车体控制子系统和无线通信子系统。设计光电编码器模块将电机转轴的几何位移信息转换成脉冲或数字量,通过激光图像采集模块对激光图像进行采集与存储。系统软件包含应用层、控制层以及驱动层,通过路径规划方法确定最优移动路径,采用卡尔曼滤波定位算法实现机器人定位。实验数据表明,采用所设计系统进行定位的机器人运动位置偏差、航向偏差的平均绝对误差和标准差分别低于4. 5 cm、1°、1. 4°,在障碍物为动态或静态时,均能实现障碍物躲避;传输时延平均值和平均终端概率分别为13. 176 ms和0. 237 1,说明该系统可进行灵活的、准确的机器人定位,且效率和稳定性高。
The traditional robot positioning system based on ultra-wide band has adopted asymmetric bilateral bidirectional ranging technology to realize robot autonomous positioning. It does not consider the selection of the optimal path, and has the defects of poor flexibility and low accuracy. The robot intelligent positioning system based on laser measurement is designed. The system hardware includes environmental sensing subsystem, data processing subsystem, body control subsystem and wireless communication subsystem. The photoelectric encoder module is designed to convert the geometric displacement information of the motor shaft into pulses or digital quantities;Laser images are collected and stored through laser image acquisition module. The system software includes application layer, control layer and driver layer. The optimal moving path is determined by the path planning method, and the positioning algorithm of Kalman filter is used to realize robot positioning. The experimental data show that the average absolute error and standard deviation of the robot moving position deviation and heading deviation using the designed system are lower than 4. 5 cm, 1 °, and 1.4°, respectively. When the obstacle is dynamic or static, obstacles can be achieved. Evasion;The av? erage transmission time delay and the average terminal probability are 13. 176 ms and 0. 237 1 , respectively, indicating that the system can carry out flexible and accurate robot positioning, and the efficiency and stability are high.
作者
裴小娜
潘洪刚
魏红彦
PEI Xiaona;PAN Honggang;WEI Hongyan(The Faculty of Physics and Electronic Information of LangFang Teachers University, Langfang Hebei 065000, China;School of Electrical and Electronic Engineering of Tianjin University of Technology,Tianjin 300384, China)
出处
《激光杂志》
北大核心
2019年第4期45-49,共5页
Laser Journal
基金
天津市自然科学基金面项目(No.17JCYBJC16600)
关键词
激光测量
机器人
智能定位
图像采集
路径规划
卡尔曼滤波算法
laser measurement
robot
intelligent location
image acquisition
path planning
calman filtering algorithm