期刊文献+

基于Time-Hardening蠕变模型和“骨点”应力方法预测P92钢缺口圆棒多轴蠕变寿命 被引量:2

PREDICTION OF MULTI-AXIAL CREEP LIFE FOR P92 STEEL NOTCHED BARS BASED ON TIME-HARDENING MODEL AND SKELETAL POINT STRESS METHOD
下载PDF
导出
摘要 提出一种用于预测金属缺口圆棒多轴蠕变寿命的方法。基于Time-Hardening蠕变模型,对缺口部位在蠕变过程中的应力分布进行了模拟。将蠕变过程中,缺口最小截面上应力不随时间变化的位置确定为"骨点"。然后借助光滑圆棒试样单轴蠕变试验的寿命-应力关系,使用"骨点"位置的等效应力预测缺口圆棒的多轴蠕变寿命。分别运用该方法和欧盟的多轴蠕变规范方法预测P92钢不同缺口半径的缺口圆棒试样多轴蠕变寿命。结果表明,该方法寿命预测精度与欧盟规范中的方法相当。本方法更加简便,方便工程应用。 A prediction method of multi-axial creep life was proposed for notched bar metal specimen. Based on the Time-Hardening creep model, the stress distribution was simulated in the notched part during creep process. On the minimum section of the notch, the position where stress kept constant during creep process was defined as "skeletal point". According to the relationship between uniaxial tensile creep lives and stresses, the von-Mises equivalent stress of "skeletal point" was used to predict the multi-axial creep life of notched bar. The multi-axial creep lives of different P92 steel notched bars were predicted by this method and European multi-axial creep code respectively. The precision of predicted creep lives of two kinds of method are equal. Furthermore, the proposed prediction method is more simple and convenient for engineering applications.
作者 曾铖 刘宇杰 ZENG Cheng;LIU YuJie(School of Mechanics and Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处 《机械强度》 CAS CSCD 北大核心 2019年第2期447-451,共5页 Journal of Mechanical Strength
关键词 P92钢 缺口圆棒 多轴蠕变 骨点应力 蠕变寿命预测 P92 steel Notched bars Multi-axial creep Skeletal point stress Creep life prediction
  • 相关文献

参考文献3

二级参考文献20

  • 1Hyde T H, Xia L, Becker A A. Prediction of creep failure in aeroengine materials under multi-axial stress states. International Journal of Mechanical Sciences, 1996, 38(4): 385~403.
  • 2Becker A A, Hyde T H, Xia L. Numerical analysis of creep in components. Journal of Strain Analysis, 1994, 29: 185~192.
  • 3Lemaitre J. Application of damage concepts to predict creep-fatigue failures.Transaction of the ASME, Journal of Engineering Materials and Technology, 1979,101:284~292.
  • 4Chaboche J L. Continuum damage mechanics: Part 2. Transaction of the ASME, Journal of Applied Mechanics, 1988, 55(1):65~72.
  • 5Daymond M R, Bonner N W. Lattice strain evolution in IMI834 under applied stress. Materials Science and Engineering A, 2003,340:272~280.
  • 6Gaffard V,Besson J,Gourgues-Lorenzon A F.in:ECF15/The 15th European Conference of Fracture Advanced Fracture Mechanics for Life and Safety Assessments,Sweden:KTH,Stockholm,2004
  • 7Plumtree A,SHEN G.Prediction of Longterm Creep and Rupture Life ISIJ International,1990,30(10):812~816.
  • 8Kouichi MARUYAMA,Hideaki KUSHIMA Prediction of Long Term Creep Curve and Rupture Life of 2.25Cr-1Mo steel,ISIJ International,1990,30(10):817~832.
  • 9Webster G A,Nikbin K M,Biglarl F.Finite element analysis of notched bar skeletal point stresses and dimension changes due to creep[J],2004 Blackwell Publishing Ltd.Fatigue Fract Engng Mater Struct 27,297~303.
  • 10Hyde T H,Yaghi A,Protor M.Use of th reference stress method in estimating the life of pipe bends under creep conditions[J],International Journal of Pressure Vessels and Piping 75(1998)161~169.

共引文献13

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部