期刊文献+

基于TLD和fDSST的长时间目标跟踪算法 被引量:8

A Long-Term Tracking Algorithm Based on TLD and fDSST
下载PDF
导出
摘要 为加强fDSST算法在目标快速运动、快速形变、目标消失情况下的跟踪精度,提出了一种基于TLD和fDSST的长时间目标跟踪算法。在fDSST算法的基础上,加入了检测器和学习器对跟踪结果进行修正和学习,并利用检测器和学习器的正负样本对跟踪结果进行置信度评估,从而解决了在跟踪失败情况下的错误参数学习问题。实验表明,基于TLD和fDSST的长时间目标跟踪算法,不但解决了fDSST算法由于目标快速运动、形变甚至消失而使跟踪失败,难以进行长时间持续跟踪的问题,且很大程度上增强了TLD算法的跟踪精度。 In order to improve the tracking precision of the f DSST algorithm when the target is moving fast deforms or even disappears a long-term tracking algorithm based on TLD and f DSST is proposed. Based on the f DSST algorithm a detector and an online learner are used to modify and learn from the tracking results. To solve the problem of learning wrong parameters when the f DSST algorithm fails the positive and negative samples of the detector and the learner are used to evaluate the tracking results. The experiment results indicate that the long-term tracking algorithm based on TLD and f DSST solves the problem that the f DSST algorithm fails to track the target for a long time when the target is in fast moving deforms or even disappears. This approach could also improve the tracking precision of the TLD algorithm.
作者 李轶锟 吴庆宪 丁晟辉 胡鲲 LI Yi-kun;WU Qing-xian;DING Sheng-hui;HU Kun(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China)
出处 《电光与控制》 CSCD 北大核心 2019年第4期44-48,70,共6页 Electronics Optics & Control
关键词 目标跟踪 长时间跟踪 TLD fDSST 跟踪精度 再次识别 target tracking long-term tracking TLD fDSST tracking precision re-recognition
  • 相关文献

参考文献4

二级参考文献50

  • 1BradskiG,KaeblerA.学习OpenCV(中文版)[M].于仕琪,刘瑞帧,译.北京:清华大学出版社,2009.
  • 2KALAL Z,MIKOLAJCZYK K, MATAS J. Face-TLD :Tracking-learn- ing-detection applied to faees[C]//Proc. ICIP 2010. Hong Kang: IEEE Press,2010 : 3789-3792.
  • 3VIOLA P, PLATI" J, ZHANG C. Multiple instance Boosting for ob- ject detection[J].Advances in Neural Information Processing Sys- tems, 2006(18) : 1417-1424.
  • 4CALONDER M, LEPETIT V, FUA P. Fast kyepoint recognition us- ing random ferns[J]. IEEE Trans. Pattern Analysis and Machine In- telligence, 2010,32 ( 3 ) : 448-461.
  • 5BABENKO B,YANG M H, BELONGIE S.VisUAL tracking with on- line multiple instance learning[C]//Proc. CVPR 2009.[S.1.]: IEEE Press, 2009: 983-990.
  • 6QI Zhiquan, XU Yitian, WANG Laisheng. Online multiple instance Boosting for object detection[J]. Neurocomputing, 2011,74 (10) : 1769-1775.
  • 7GRABNER H, BISCHOF H. On-line Boosting and vision[C]//Proc. CVPR 2006. New York :IEEE Press, 2006: 260-267.
  • 8李雅林,张化祥,张顺.基于近邻加权及多示例的多标记学习改进算法[EBIOL].[2012-10-28].http://www.cnki-net/kcms/detail/11.2127.rP.20120801.1653.030.html.
  • 9GRABNER H, LEISTNER C, BISCHOF H. Semi-supervised on-line Boosting for robust tracking [C]// Proc. European Conf on Computer Vision.Berlin: Springer, 2008 : 234-247.
  • 10GRABNER H,GRABNER M,BISCHOF H. Real-time tracking via on-line boosting[C]//Proc. British Machine Vision Conference.Edin- burgh: [s.n.], 2006 : 27-36.

共引文献67

同被引文献46

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部