摘要
In this study, a new near-beta titanium alloy, Ti- 4Al-1 Sn-2Zr-5Mo-8V-2.5Cr, was prepared by induction skull melting (ISM) and multidirectional forging. The effect of aging heat treat me rn on microstructure and ten sile properties of the alloy after solution treatment in the twophase (α+β) region was investigated. The microstructure results show that the globular primary ot phase (cxp) and the needle-like secondary y. phase (ots) are precipitated in the P matrix. The size of ots increases with the increase in aging temperature, while the con tent of ots goes up to a peak value and then decreases. The tensile testing results show that the strength increases first and then decreases with the in crease in temperature. The variation of ductility presents the opposite way compared with the trend of strength level. When aged at 500℃, the alloy exhibits an excellebalance of tensile strength (1529 MPa) and elongation (9.22%). And the relative mechanism of sirengthening and toughening was analyzed and discussed.
In this study, a new near-beta titanium alloy, Ti-4Al-1Sn-2Zr-5Mo-8V-2.5Cr, was prepared by induction skull melting(ISM) and multidirectional forging. The effect of aging heat treatment on microstructure and tensile properties of the alloy after solution treatment in the twophase(α + β) region was investigated. The micros tructure results show that the globular primary α phase(α_p) and the needle-like secondary α phase(α_s) are precipitated in the β matrix. The size of α_s increases with the increase in aging temperature,while the content of α_s goes up to a peak value and then decreases. The tensile testing results show that the strength increases first and then decreases with the increase in temperature. The variation of ductility presents the opposite way compared with the trend of strength level.When aged at 500 ℃, the alloy exhibits an excellent balance of tensile strength(1529 MPa) and elongation(9.22%). And the relative mechanism of strengthening and toughening was analyzed and discussed.
基金
financially supported by the National Natural Science Foundation of China (Nos. 51504163, 51604191 and 51601099)