期刊文献+

聚丙烯/氧化石墨烯(PP/GO)复合材料的制备及性能 被引量:4

Preparation and Properties of Polypropylene/Graphene Oxide(PP/GO) Nanocomposite
下载PDF
导出
摘要 通过原位聚合法制备了聚丙烯/氧化石墨烯(PP/GO)复合材料,并以此为母料与聚丙烯溶液共混,制备了不同氧化石墨烯含量的PP/GO复合材料,研究了GO对复合材料力学性能、电性能及热性能的影响。力学性能测试发现,石墨烯能显著提高复合材料的刚性,同时,使其韧性降低。当GO的含量为2.5%时,复合材料的弹性模量和拉伸强度分别提高了700%和82%,而断裂伸长率降低了93%。电性能测试结果发现,PP/GO的渗流阈值为1.5%,在此含量条件下,复合材料的电导能达到10^-2S/m,与PP相比,提高了11个数量级;同时,PP/GO的快速降解温度也提高了250℃。 Polypropylene/graphene (PP/GO) nanocomposite was prepared by in-situ polymerization, and PP/GO composite with different GO content were prepared by solution blending of PP and PP/GO as stated above. The effects of GO on mechanical, electrical and thermal properties of composite were studied. The mechanical properties test found that GO could significantly improve the rigidity of the composite material while reducing the toughness. When the content of GO was 2. 5%, the elastic modulus and tensile strength of the composite increased by 700% and 82%, respectively, but the elongation at break decreased by 93%. The electrical properties test results showed that the percolation threshold of PP/GO was 1. 5%, at which the conductivity of the composite could reach to 10^-2 S/m, which was 11 orders of magnitude higher than that of PP. The rapid degradation temperature of PP/GO was 250℃ higher than that of PP.
作者 田小艳 高超锋 黄捷 王悦 王波 汤粤豫 TIAN Xiaoyan;GAO Chaofeng;HUANG Jie;WANG Yue;WANG Bo;TANG Yueyu(Shaanxi Petroleum Chemical Engineering Research and Design Institute, Xi'an, Shaanxi 710054,China)
出处 《塑料》 CAS CSCD 北大核心 2019年第2期105-108,共4页 Plastics
关键词 聚丙烯 石墨烯 原位聚合 热性能 力学性能 电性能 PP graphene in situ polymerization thermal properties mechanical properties electrical performance
  • 相关文献

参考文献3

二级参考文献22

  • 1蔡洪光,张春雨,邱光南,李海东,陈斌,张学全.聚丙烯/蒙脱土纳米复合材料的制备与性能[J].塑料科技,2006,34(5):44-47. 被引量:11
  • 2Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007,6(3):183-191.
  • 3Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006,442(7100):282-286.
  • 4Huang Xiao, Qi Xiaoying, Zhang Hua, et al. Graphene-based composites[J]. Chem Soc Rev, 2012,41 (2):666-686.
  • 5Kalaitzidou K, Fukushima H, Drzal L T. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets[J]. Carbon, 2007,45(7): 1 446-I 452.
  • 6Li Yunfeng, Zhu Jiahua, Wei Suying, et al. Poly(propylene) / graphene nanoplatelet nanocomposites:melt rheological behavior and thermal, electrical, and electronic properties[J]. Macromolecular Chemistry and Physics,2011,212(18):1 951-1 959.
  • 7Yun Y S, Bae Y H, Kim D H, et al. Reinforcing effects of adding alkylated graphene oxide to polypropylene[J]. Carbon, 2011, 49(11):3553-3559.
  • 8Hsiao M C, Liao S H, Lin Y F, et al. Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite[J]. Nanoscale, 2011,3(4): 1516-1522.
  • 9Wu Chao, Huang Xingyi, Wang Genlin, et al. Hyperbranched- polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites[J]. J Mater Chem,2012,22(14):7 010-7 019.
  • 10Lin Yue, Jin Jie, Song Mo. Preparation and characterisation of covalent polymer functionalized graphene oxide[J]. Journal of Materials Chemistry, 2011,21 (10):3 455-3 461.

共引文献16

同被引文献20

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部