期刊文献+

公安智慧教育视域下学警行为轨迹分析预警研究

Analysis and Early Warning Research on the Behavioral Track of the Police in the Perspective of Public Security Wisdom Education
原文传递
导出
摘要 在当前公安智慧教育建设背景下,为了更好适应现代警务发展的要求,公安院校学警管理借助人工智能、大数据、云计算、物联网、泛在感知等现代信息技术,全方位采集、清洗、提取、挖掘、反馈来自学警行为特征、学习行为、生活习惯、心理行为等海量轨迹数据,及时定位学警从入学到毕业、从学习到实习整个成长中的日常过程与细节,建构了学警学业、思想、生活等方面行为轨迹分析预警系统,为公安院校教学、学管等学警管理部门提供实时性、全样本的数据信息与可操作的个性化、共享化的公安智慧教育模式。 In the current background of public security and wisdom education, in order to better adapt to the requirements of modem police development, public security colleges and police management rely on artificial intelligence, big data, cloud computing, Internet of Things, ubiquitous perception and other modem information technology. Collect, cleanse, extract, mine and feedback the massive trajectory data from the behavioral characteristics, learning behaviors, living habits and psychological behaviors of the police, and timely locate the daily process of the police from enrollment to graduation, from study to internship. With the details, it constructs a behavioral trajectory analysis and early warning system for the academic, ideological, and life aspects of the police, providing real -time, full -sample data information and operable individualization and sharing for the police management departments such as teaching and learning in public security colleges. The public security wisdom education model.
作者 姚东升 单巧斌 Yao Dong-sheng;Shan Qiao-bin(Shanghai Public Security College, Shanghai 200137 China;Shanghai Municipal Public Security Bureau Wenbao Branch, Shanghai 200084 China)
出处 《西部公安论坛》 2019年第1期71-75,共5页 Journal of Western Public Security
关键词 公安智慧教育 学警行为轨迹 分析预警研究 public security wisdom education pedag
  • 相关文献

参考文献12

二级参考文献213

  • 1翟博.教育均衡发展:理论、指标及测算方法[J].教育研究,2006,27(3):16-28. 被引量:313
  • 2梅龙宝,赵毅.校园安全管理信息系统设计与实现[J].中国教育信息化(高教职教),2007(04S):67-69. 被引量:4
  • 3刘俊.基于大数据流的Multi-Agent系统模型研究[J].计算机技术与发展,2007,17(5):166-169. 被引量:10
  • 4[OL].<http://hadoop.apache.org.>.
  • 5WinterCorp: 2005 TopTen Program Summary. http:// www. wintercorp, com/WhitePapers/WC TopTenWP. pdf.
  • 6TDWI Checklist Report: Big Data Analytics. http://tdwi. org/research/2010/08/Big-Data-Analytics, aspx.
  • 7Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. SIGMOD Rec, 1997,26(1): 65-74.
  • 8Madden S, DeWitt D J, Stonebraker M. Database parallelism choices greatly impact scalability. DatabaseColumn Blog. http://www, databasecolumn, com/2007/10/database-parallelism-choices, html.
  • 9Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters//Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI ' 04). San Francisco, California, USA, 2004: 137-150.
  • 10DeWitt D J, Gerber R H, Graefe G, Heytens M L, Kumar K B, Muralikrishna M. GAMMA--A high performance dataflow database machine//Proceedings of the 12th International Conference on Very Large Data Bases (VLDB' 86). Kyoto, Japan, 1986:228-237.

共引文献3299

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部