期刊文献+

基于α-stable分布的多目标粒子群算法研究及应用 被引量:6

Research and Application of Multi-Objective Particle Swarm Optimization Algorithm Based on α-Stable Distribution
下载PDF
导出
摘要 多目标的粒子群算法(MOPSO)在各个领域的优化设计中得到了广泛应用及改进,但是目前仍然存在着在进化后期容易陷入局部最优导致收敛精度低、解的多样性差等问题。引入α-stable分布理论,发展建立了一种新的基于α-stable动态变异的多目标粒子群优化算法(ASMOPSO)。通过α-stable分布生成随机数对PSO算法的种群进行变异操作,增加种群的多样性,在算法中动态调整稳定性系数α实现变异范围和幅度的变化,从而使得改进的ASMOPSO算法具有兼顾计算精度和全局寻优的能力。使用ZDT系列无约束函数和带约束的Tanaka及Srinivas函数对改进前后的算法进行了测试,结果显示出了ASMOPSO算法的快速全局寻优性能。将改进后的算法应用到RAE2822跨音速翼型的减阻和力矩绝对值不增大的综合优化中,得到了较好的多目标气动优化结果。 The multi-objective particle swarm optimization algorithm (MOPSO) has been applied and modified for optimal designs in various engineering fields. However, the intimal algorithm is still has the problems of low accuracy and poor diversity of solutions as it is easy to fall into local optimum in the later evolution stage. A new dynamic mutation operator has been established based on the α-stable distribution theory and incorporated with multi-objective particle swarm optimization algorithm(ASMOPSO). By using random Numbers which generated by the α-stable distribution, the population of PSO algorithm was mutated. And this mutate operation increases the diversity of the population. Because the stability coefficient in the ASMOPSO algorithm can change the range and amplitude of the mutation. This operation makes the new algorithm has the ability to balance the calculation accuracy and global optimization. Several benchmark functions test show that the ASMOPSO algorithm has fast global optimization ability. The proposed algorithm is applied to the multi-objective aerodynamic optimization design of RAE2822 transonic airfoil. The comparison results also show that ASMOPSO algorithm is more excellent than the basic MOPSO algorithm.
作者 樊华羽 詹浩 程诗信 米百刚 FAN Huayu;ZHAN Hao;CHENG Shixin;MI Baigang(School of Aeronautics, Northwestern Polytechnical University, Xi′an 710072, China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2019年第2期232-241,共10页 Journal of Northwestern Polytechnical University
关键词 多目标粒子群优化算法:α-stable分布 动态变异 翼型设计 气动优化 multi-objective particle swarm optimization α-stable distribution dynamic mutation airfoil design aerodynamic optimization
  • 相关文献

参考文献4

二级参考文献21

  • 1胡建秀,曾建潮.微粒群算法中惯性权重的调整策略[J].计算机工程,2007,33(11):193-195. 被引量:62
  • 2Kennedy J, Eberhart R C. Particle swarm optimization [ C ]. Proceedings of IEEE International Conference on Neural Networks Perth, WA, Australia, 1995 : 1942 - 1948.
  • 3Hicks R M, Henne P A. Wing design by numerical optimization [ J ]. Journal of Aircraft, 1978,15 ( 7 ) :407 - 413.
  • 4栾丽君,谭立静,牛奔.一种基于粒子群优化算法和差分进化算法的新型混合全局优化算法[J].信息与控制,2007,36(6):708-714. 被引量:70
  • 5Timmer W A,van Tooij R P J O M. Summary of the Delft University wind turbine dedicated airfoils[J]. Journal of Solar Energy Engineering,2003,125 (4) :488 - 496.
  • 6Standish K J, Darn C P V. Aerodynamic analysis of blunt trailing edge airfoils [ J ]. Journal of Solar Energy Engineering ,2003,125 (4) :479 - 487.
  • 7Baker J P,Mayda E A,Dam C P V. Experimental analysis of thick blunt trailing-edge wind turbine airfoils [J].. Journal of Solar Energy Engineering,2006,128 (4) :422 - 434.
  • 8Cagnina L, Esquivel S, Coello C A. A particle swarm optimizer for multi-objective optimization [J].. Journal of Computer Science and Technology,2005,5 ( 4 ) : 204 - 201.
  • 9Raquel C R, Naval P C. An effective use of crowding distance in multi-objective particle swarm optimization [ C]// Proceedings of the 2005 Conference on Genetic and Evolutionary Computation. New York: ACM, 2005 : 257 - 264.
  • 10夏露,高正红.一种单亲DNA算法在翼型设计中的应用[J].空气动力学学报,2009,27(3):335-339. 被引量:8

共引文献32

同被引文献53

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部