期刊文献+

基于轨迹映射模型的天车多目标调度方法 被引量:4

Multi-objective Scheduling Method for Workshop Cranes Based on Projection Model of Trajectories
下载PDF
导出
摘要 为有效解决生产过程中的多天车调度问题,在统筹考虑天车任务初始态和时空约束等特征的基础上,提出一种全新的天车轨迹映射模型.结合传统差分进化方法,将库位分配规则和天车分配算法融合到调度算法的每一次迭代过程中以指导算法寻优.以最小化入库订单延迟成本和最小化出库订单等待成本作为评价指标,设计仿真试验并与经典多目标优化算法进行对比,验证了算法是有效可行的,进一步的数值试验表明了合理的调度规则可以有效提高天车调度性能. To efficiently solve the multi-crane scheduling problem during the production process,a novel projection model of trajectories the proposed with the consideration of initial states of tasks and space-time constraints.Based on the differential evolution algorithm,stock allocation rules and a crane allocation algorithm were combined to guide the optimization process in each iteration.Taking the minimization of delay cost and waiting cost as the evaluation indices,the simulation experiment was designed and compared with the classical multi-objective optimization algorithms.The results show that the algorithm is effective and feasible.Further numerical experiments indicate that reasonable scheduling rules can effectively improve the crane scheduling performance.
作者 周炳海 廖秀梅 ZHOU Binghai;LIAO Xiumei(School of Mechanical and Energy Engineering,Tongji University,Shanghai 201804,China)
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第4期10-16,共7页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(71471135)~~
关键词 天车轨迹映射 时空约束 多目标 启发式算法 projection of crane trajectories space-time constraints multi-objectives heuristic algorithms
  • 相关文献

参考文献2

二级参考文献13

  • 1COELLO C A. Evolutionary multi-objective optimization: a historieal view of the field [J ]. IEEE Computational Intelligence Magazine, 2006, 1 (1) : 28 - 36.
  • 2RAINER S, PRICE K. Differential evolution - a simple and efficient heuristic :for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997,11 (4) :341 - 359.
  • 3PRICE K. Differential evolution vs the functions of the 2nd ICEO [C]//IEEE International Conference on Evolutionary Computation. Indianapolis, 1997:153 - 157.
  • 4ABBASS H A ,SARKER R,NEWION C. PDE: a pareto-frontier differential evolution approach for multi-objective optimization problems[C]//IEEE Congress on Evolutionary Computation. Piscataway, 2001 : 971 - 978.
  • 5ABBASS H A, SARKER R. The pareto differential evolution algorithm[J]. International Journal on Artificial Intelligence Tools, 2002,11 (4) :531 - 552.
  • 6BABU B V, MATHEW M, JEHAN L. Differential evolution for multi-objective optimization[C]//IEEE Congres,s on Evolutionary Computation. Canberra, 2003: 2696 - 2703.
  • 7PARSOPOULOS K E, TASOULIS D K, PAVLIDIS N G, et al. Vector evaluated differential evolution for multiobjective optimization[C]//IEEE Congress on Evolutionary Computation. Portland, 2004: 204 - 211.
  • 8DEB K,PRATAP A, AGARWAL S,et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ [J ]. IEEE Transactions on Evolutionary Computation, 2002,6 (2) : 182 - 197.
  • 9ZITZLER E,DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: empirical results[J]. Evolutionary Computation,2000,8 (2) : 173 - 195.
  • 10COELLO C A, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004,8(3) :256 - 279.

共引文献19

同被引文献21

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部