期刊文献+

基于功率控制的认知无线网络能效研究 被引量:2

Study on Energy-efficient of Cognitive Wireless Networks Based on Power Control
下载PDF
导出
摘要 针对Underlay频谱共享模式下的认知无线网络的能量效率问题,提出了一种双重改进的粒子群功率控制优化算法(Dual Improved Particle Swarm Optimization,DIPSO),通过最小化约束条件下认知用户的发射功率以实现网络能量效率优化.在仿真过程中,以保证认知用户基本通信的同时不对主用户正常通信构成影响为基本前提,对信道衰落及噪声干扰进行了综合考虑,搭建出多约束条件下的网络能量效率函数,实现认知无线网络中认知用户发射功率的最小化.仿真结果表明:该算法可有效提升无线网络的能量效率. Aiming at the problem of cognitive wireless network energy efficiency under underlay spectrum sharing mode,a double improved particle swarm optimization algorithm(DIPSO)for power control was proposed.The optimization of network energy efficiency was realized by recognizing the transmitted power of users under the condition of minimizing constraints.In the simulation process,under the circumstance of considering channel fading and noise interference,the fuction of network energy efficiency and relevant constraints were constructed on the premise where the normal communication of main users was not affected,the basic communication of users was guaranteed,and the transmission power of cognitive users in the cognitive wireless network was minimized.The simulation shows that the proposed algorithm can effectively improve the energy efficiency of wireless network.
作者 韩宾 邓冬梅 江虹 HAN Bin;DENG Dongmei;JIANG Hong(State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology,Mianyang 621010,China;School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,China)
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第4期115-120,共6页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(61771410)~~
关键词 认知无线电 DIPSO 功率控制 能效优化 cognitive wireless radio dual improved particle swarm optimization(DIPSO) power control energy-efficient optimization
  • 相关文献

参考文献1

二级参考文献12

  • 1YU R, ZHANG C, ZHANG X, et al. Hybrid spectrum access in cognitive radio based smart-grid systems[J]. IEEE Systems Journal, 2014, 8(2).. 577-587.
  • 2MING J, YOU M L, HEUNG G IL On the performance of covari- ance based spectrum sensing for cognitive radio [J]. IEEE Transac- tions on Signal Processing, 2012, 60(7): 3670-3682.
  • 3ZENG Y H, LIANG Y C, HOANG A T, etal. A review on spec- trum sensing for mgnifive radio: challenges and solutions [J]. EUR- ASIP Journal on Advances in Signal Processing,2010(1) : 1-15.
  • 4GOKCEOGLU A, DIKMESE S, VALKAMA M, et al. Energy de- tection under IQ imbalance with single-and multi-channel direct-con- version receiver: analysis and mitigation [J]. IEEE Journal on Select- ed Areas in Communications, 2014, 32(3) : 411-424.
  • 5EL-KHAMY S E, EL-MAHALLAWY M S, YOUSSEF E S. Im- proved wideband spectrum sensing techniques using wavelet-based edge detection for cognitive radio [C]//Proceedings of 2013 Interna- tional Conference on Computing, Networking and Communications. San Diego, CA.. IEEE Computer Society, 2013: 418-423.
  • 6SANNA M, MURRONI M. Optimization of non-convex multiband cooperative sensing with genetic algorithms [J]. IEEE Journal of Se- lected Topics in Signal Processing, 2011, 5(1): 87-96.
  • 7LIU S, SHEN J, ZHANG R, et al. Information theoretic criterion- based spectrum sensing for cognitive radio [J]. IET Communica- tions, 2008, 2(6): 753-762.
  • 8LIAVAS A P, REGALIA P A, DELMAS J P. Blind channel ap- proxirnation., effective channel order determination [J]. IEEE Trans- actions on Signal Processing, 1999, 47(12): 3336-3344.
  • 9HSIEN T W, JAR F Y, FWU K C. Source number estimators using transformed gerschgorin radii[J]. IEEE Transactions on Signal Pro- cessing, 1995, 43(6): 1325-1333.
  • 10YANG X, PENG S L, LEI K J, et al. Impact of the dimension of the observation space on the decision thresholds for GLRT detectors in spectrum sensing [J]. IEEE Wireless Coramunications Letters, 2012, 1(4): 396-399.

共引文献2

同被引文献3

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部