期刊文献+

置信传播和模拟退火相结合求解约束满足问题 被引量:9

Combining belief propagation and simulated annealing to solve random satisfaction problems
下载PDF
导出
摘要 约束满足问题是人工智能领域的一个重要问题。针对一个具有精确相变现象和能产生大量难解实例的随机约束满足问题,提出了置信传播和模拟退火相结合的求解算法。这种算法先通过置信传播方程收敛后得到变量取值的边际概率分布,分别采用最大概率和最小分量熵的策略产生一组启发式的初始赋值,再用模拟退火对这组赋值进行修正。实验结果表明,该算法大大提高了初始赋值向最优解收敛的速度,表现出了显著优越于模拟退火算法的求解性能。 Constraint satisfaction problem is an important issue in the field of artificial intelligence. This paper proposed two algorithms combining belief propagation and simulated annealing to solve a random constraint satisfaction problem with exact phase transitions and large number of hard instances. The algorithms firstly obtained the marginal probability distribution of variable values after the convergence of the belief propagation equation, then used the strategy of maximum probability and minimum component entropy to generate a set of heuristic initial assignments, and then used simulated annealing to modify the assignments. The experimental results show that the algorithms greatly improve the convergence rate from the initial assignments toward the optimal solution, and shows a significant advantage over simulated annealing algorithm.
作者 吴拨荣 赵春艳 原志强 Wu Borong;Zhao Chunyan;Yuan Zhiqiang(College of Science, University of Shanghai for Science & Technology, Shanghai 200093, China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第5期1297-1301,共5页 Application Research of Computers
基金 国家自然科学基金青年基金资助项目(11301339) 国家自然科学基金国际(地区)合作与交流项目(11491240108)
关键词 RB模型 相变现象 置信传播 模拟退火 算法效率 RB model phase transition belief propagation simulated annealing algorithm efficiency
  • 相关文献

参考文献3

二级参考文献48

  • 1许可,李未.The SAT phase transition[J].Science China(Technological Sciences),1999,42(5):494-501. 被引量:1
  • 2Ian P. Gent,Ewan Macintyre,Patrick Prosser,Barbara M. Smith,Toby Walsh.Random Constraint Satisfaction: Flaws and Structure[J].Constraints.2001(4)
  • 3Creignou N,Daude H.The SAT-UNSAT transition for random constraint satisfaction problems[].Discrete Mathematics.2009
  • 4Hartmann A K,Weigt M.Statistical mechanics perspective on the phase transition in vertex covering of finite-connectivity random graphs[].Theoretical Computer Science.2001
  • 5Achlioptas D,Peres Y.The threshold of random k-SAT is2k log k O (k)[].J Am Math Soc.2004
  • 6Achlioptas D,Naro A,Peres Y.Rigorous location of phase transitions in hard optimization problems[].Nature.2005
  • 7Weigt M,Zhou H.Message passing for vertex covers[].Physical Review E Statistical Nonlinear and Soft Matter Physics.2006
  • 8Zhou J,Zhou H.Ground-state of the random vertex-cover problem[].Physical Review E Statistical Nonlinear and Soft Matter Physics.2009
  • 9Dall’’Asta L,Pin P,Ramezanpour A.Statistical mechanics of maximal independent sets[].Physical Review E Statistical Nonlinear and Soft Matter Physics.2009
  • 10Chavas J,Furtlehner C,Mezard M,et al.Survey-propagation decimation through distributed local computations[].J Stat Mech.2005

共引文献28

同被引文献17

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部