期刊文献+

基于改进FOCUSS算法的电容层析成像算法研究

Image reconstruction algorithm for electrical capacitance tomography based on improved FOCUSS algorithm
下载PDF
导出
摘要 针对电容层析成像(electrical capacitance tomography,ECT)逆问题求解的病态性和不适定性,在压缩感知(compressed sensing,CS)的基础上,提出一种改进FOCUSS的ECT重建算法。采用离散余弦变换(DCT)基将原始图像灰度信号进行稀疏化处理,在使用正则化FOCUSS算法求解的过程中引入拟牛顿法逼近求解中间稀疏变量,以提高信号重构的准确性。仿真实验结果表明,同LBP、Tikhonov和Landweber和FOCUSS算法相比,改进的FOCUSS算法能够有效区分物场中的不同介质,改善图像过度平滑的问题,减小图像误差至0.23,提高图像相关系数至0.80,具有更好的成像效果,为ECT图像重建算法的研究提供新的思路。 On the basis of compressed sensing,this paper proposed an improved FOCUSS algorithm for the reconstruction of electrical capacitance tomography,which aiming at the ill-conditionedness and ill-posedness of the inverse problem of ECT.The discrete cosine transform (DCT) basis made the grayscale signals of original images sparse.In the process of solving the inverse problem by employing the regularized FOCUSS algorithm,it introduced the quasi-Newton method to approximate and solve the intermediate sparse variables to improve the accuracy of signal reconstruction. Results of the simulation show that compared with LBP,Tikhonov,Landweber and FOCUSS algorithm,the improved FOCUSS algorithm can effectively distinguish the different media in the substance field,alleviate the over-smoothing effect,reduce the image error between the original image and the reconstructed image to 0.23,it increases the correlation coefficient to 0.80,offers better image quality,and provides a new idea for the research on the algorithm for the reconstruction of ECT.
作者 马敏 刘亚楠 杨涛 薛倩 Ma Min;Liu Yanan;Yang Tao;Xue Qian(College of Electronic Information & Automation, Civil Aviation University of China, Tianjin 300300, China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第5期1589-1591,1596,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61401466) 中央高校基金资助项目(3122013C007) 国家自然科学基金委员会与中国民用航空局联合资助项目(U1733119) 民航科技资助项目(20150220)
关键词 电容层析成像 压缩感知 FOCUSS算法 拟牛顿法 electrical capacitance tomography compressed sensing FOCUSS algorithm quasi-Newton method
  • 相关文献

参考文献3

二级参考文献24

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部