期刊文献+

基于对偶数矩阵的穿刺机器人建模及工作空间分析

Modeling Based on Dual-Number Matricesand Workspace Analysis of Puncture Robot
下载PDF
导出
摘要 提出了一种穿刺机器人,由竖直移动关节、水平移动关节、前后移动关节、相互垂直方向上的两个旋转关节以及进针关节共同组成,六个关节实现对针尖姿态的调整,进而达到协助医生治病医疗的功能。阐明了一种基于对偶数矩阵建立运动学模型的整体步骤、方案,并针对所提出的穿刺机器人进行数学模型的建立,通过经典的D-H法进行验证,结果表明,用对偶数模型也能达到D-H法同样的结果,并进一步推测,假如建立一种对偶数运算法则函数,将极大提高运动学数值运算的速度,对于高关节数目的机械运动的计算具有一定的指导意义和参考价值。最后,在对偶数矩阵建立的模型基础上对机器人进行工作空间分析,初步证实了关节结构尺寸设计的合理性。 A Puncture robot is proposed,which consists of a vertical moving joint,a horizontal moving joint,a front and rear moving joint,two rotating joints in the vertical direction,and a needle joint. The six joints realize the adjustment of the needle tip posture,thereby achieving the function of assisting the doctor in medical treatment. The whole step and program of establishing kinematics model based on dual-number matrices are clarified,and the mathematical model of the proposed Puncture robot is established. The classical D-H method is used to verify the results,it is shown that using the dual-number matrices can achieve the same result of using D-H method,and further speculate,if a pair of dual-number arithmetic function is built,it will greatly improve the speed of kinematic numerical operations,and it also has a guiding significance and reference price for the calculation of many numbers of joints in mechanical motion. Finally,based on the model established by the dual-number matrices,the workspace analysis of the robot is carried out,and the rationality of the joint structure design is preliminarily determined.
作者 胡顺 毛金城 张尚盈 彭沁 韩炽 HU Shun;MAO Jincheng;ZHANG Shangying;PENG Qin;HAN Chi(School of Mechanical and Electrical Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《机械》 2019年第4期70-74,共5页 Machinery
关键词 穿刺机器人 对偶数矩阵 蒙特卡罗法 工作空间 puncture robot dual-number matrices Monte Carlo method (MCM) workspace
  • 相关文献

参考文献3

二级参考文献15

  • 1朱建敏,许有恒.机器人工作灵活性的分析方法[J].上海交通大学学报,1989,23(2):53-60. 被引量:5
  • 2许果,王峻峰,何岭松.一种基于SCARA机器人机械结构设计[J].机械工程师,2005(4):65-67. 被引量:17
  • 3Denavit J, Hartenberg R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. Journal of Applied Mechnics, 1995, 21 (5): 215-221.
  • 4Brocket R. Robotic manipulators and the product of exponential formula [ C ]. Symposium in Mathematic Theory International of Network and Systems, 1983:120-129.
  • 5Nicholas A, John K. A comparative study of three methods for robot kinematics [J]. IEEE Transactions on Systems, Man and Cybernetics Part B.. Cybernetics, 1998,28(2):135-145.
  • 6John J Craig. Intrduction to robotics mechanics and control. Third Edition [M]. America: Prentice Hall, 2004 : 75-76.
  • 7Corke P I. A robotics toolbox for MATLAB[J].IEEE Robotics and Automation Magazine, 1996, 3(1):24- 32.
  • 8KUMAR A, WARLDRON K J. The Workspace of a Mecha- nical Manipulator[J]. ASME Journal of Mechanical Design, 1981,103 (3) :665-672.
  • 9ROTH. B. Performance Evaluation of Manipulators from a Kinematic Viewpoint [J]. National Bureau of Standards Special Publications, 1975,459:39-61.
  • 10YANG D C H, LEE T W. On the Workplace of Mech- anical Manipulators [J]. Mechannisms Transmission and Automation Desima. 1983.105( 1 ):62-69.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部