期刊文献+

图像篡改检测感知哈希技术综述 被引量:6

Survey on Image Tamper Detection with Perceptual Hashing
下载PDF
导出
摘要 互联网的发展使得多媒体的真实性、完整性认证成为亟待解决的问题。感知哈希在理解图像内容基础上,通过简短的感知摘要来完成图像内容的识别和认证,为解决与多媒体认证相关的管理问题提供了一种更为便捷的方式。首先,总结了目前基于底层线索和基于学习的感知哈希图像篡改检测方法,并根据方法的不同特点进行了更为细致的分类。其次,介绍了常用的数据集,给出了三种算法性能评价指标,并在不同数据集上对最近的几种算法进行了定性和定量的比较分析。最后,对基于感知哈希的图像篡改检测的关键问题进行了总结,并对未来的发展趋势进行了展望。 The rapid development of internet techniques has brought many issues to multimedia data authenticity and integrity authentication. Perceptual Hashing can complete the identification and authentication of image content through a brief perceptual representation, which provides a more convenient way to solve the management problems related to multimedia data authentication. This paper first summarizes the methods of low- level cues and learning based perceptual Hashing algorithms for image tamper detection, and gives a more detailed classification based on the different characteristics. Next, this paper introduces the common used datasets for image tamper detection and three evaluation metrics. Four existing methods with qualitative and quantitative comparisons on different datasets are analyzed in the experiments. Finally, the key problems of image tamper detection based on perceptual Hashing are summarized, and the future development trend is prospected.
作者 杜玲 陈振 DU Ling;CHEN Zhen(School of Computer Science and Technology, Tianjin Polytechnic University, Tianjin 300387, China)
出处 《计算机科学与探索》 CSCD 北大核心 2019年第5期721-741,共21页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61602344 天津市教委科研计划项目No.2017KJ091~~
关键词 感知哈希 篡改检测 底层线索 哈希学习 perceptual Hashing tamper detection low-level cues learning based Hashing
  • 相关文献

参考文献5

二级参考文献39

  • 1KOZAT S S, MIHCAK K, VENKATESAN R. Robust perceptual image hashing via matrix invariants [ C l// Proceedings of IEEE Conference on Image Processing. Piscataway, NJ : IEEE, 2004 : 3443 - 3446.
  • 2MONGA V, MHCAK M K. Robust and secure image hashing via non-negative matrix factorizations [ J ]. IEEE Transactions on Information Forensics and Securi- ty, 2007, 2 (3) : 376 - 390.
  • 3SEBE N, TIAN Q, LOUPIAS E, et al. Color indexing using wavelet-based salient points[ C]//Proceedings of IEEE Workshop on Content-based Access of Image and Video Libraries. Washington DC : IEEE Computer Socie- ty, 2000:15-19.
  • 4SWAMINATHAN A, MAO Yinian, WU Min. Robust and secure image hashing[.l]. IEEE Transactions on Informa- tion Forensics and Security, 2006, 1(2) : 215 -230.
  • 5TEAGUE M R. Image analysis via the general theory of moments [ J ]. Journal of Optical Society of Hmetica, 1980, 7(8): 920-930.
  • 6ABU-MOSTAFA Y, PSALTIS D. Image normalization by complex moments [ J ]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 1985, PAMI - 7 ( 1 ) : 46 -55.
  • 7KHOTANZAD A, HONG Y H. Invariant image recogni- tion by Zernike moments [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5) : 489 -497.
  • 8王甦 汪安圣.认知心理学[M].北京:北京大学出版社,1992..
  • 9A W M Smeulders, et al. Content-based image retrieval at the end of the early years[ J] .IEEE Transactions on Pattern Analysis and Machine Intelligence,2000, 22(12) : 1349 - 1380.
  • 10B B Zhu,M D Swanson, A H Tewfik.When seeing isn't believing[ J] .IEEE Signal Processing Magazine,2004,21 (2):40 - 49.

共引文献115

同被引文献48

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部