期刊文献+

后验概率与最小均方误差解结合的GNSS部分模糊度解算策略 被引量:3

GNSS Partial Ambiguity Resolution Based on Posterior Probability and Minimum Squares Error Solution
下载PDF
导出
摘要 在GNSS弱定位模型中,常常需要采用模糊度部分解算方法获得满意的定位精度。为了进一步提升定位的准确性,本文从3个方面对模糊度部分解算方法进行改进:①决定模糊度被固定元素的依据不再是完全基于模型的Bootstraping成功率,而是同时基于模型和观测数据的后验概率。②当模糊度部分固定时,未固定的模糊度元素不再取条件浮点解,而是取基于已固定元素的最小均方误差解。③当模糊度完全不固定时,模糊度向量不再取浮点解,而是取最小均方误差解。试验中用一组北斗实测数据检验了原GNSS模糊度部分解算方法和新方法。结果表明,新方法部分固定和不固定历元数量少于传统方法,且定位精度显著提高。 GNSS partial ambiguity resolution (PAR) is usually used in weak GNSS positioning model to gain an acceptable position solution.In order to further improve the positioning precise of PAR,this contribution modifies RAR from 3 aspects.① Whether an element of the ambiguity vector is fixed is determined by the posterior probability instead of the Bootstrapping success rate.For the reason that posterior probability is based on data and model simultaneously,whereas Bootstrapping success rate is only determined by GNSS positioning model.②In the ambiguity partially fixed cases,the minimum squares error (MSE) solution of unfixed elements is calculated by the correlation with other fixed ones.However,traditional PAR treats them as conditional float solutions.③ In the ambiguity totally unfixed cases,the MSE solution of the whole ambiguity vector is used to take the place of its float solution.In the experiment,a set of BDS real observed data are used to testify the property of traditional and new PAR.The results show that the partial fixed and unfixed cases for our new PAR method are less than that for the traditional one,and the position precise is sufficiently improved.
作者 吴泽民 边少锋 WU Zemin;BIAN Shaofeng(Naval University of Engineering,Wuhan 430033,China;Troops 91919,Huanggang 438021,China)
机构地区 海军工程大学 [
出处 《测绘学报》 EI CSCD 北大核心 2018年第B12期54-60,共7页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(41504029 41274013)~~
关键词 GNSS 模糊度部分解算 定位精度 后验概率 最小均方误差 GNSS partial ambiguity resolution positioning precise posterior probability MSE
  • 相关文献

参考文献4

二级参考文献48

  • 1周扬眉,刘经南.OTF方式下短程GPS精密动态定位的数学模型[J].武汉大学学报(信息科学版),2004,29(8):704-707. 被引量:2
  • 2周扬眉,刘经南,刘基余.回代解算的LAMBDA方法及其搜索空间[J].测绘学报,2005,34(4):300-304. 被引量:17
  • 3张小红,刘经南,Rene Forsberg.基于精密单点定位技术的航空测量应用实践[J].武汉大学学报(信息科学版),2006,31(1):19-22. 被引量:152
  • 4刘志平,何秀凤.改进的GPS模糊度降相关LLL算法[J].测绘学报,2007,36(3):286-289. 被引量:22
  • 5戈卢布GH 范洛恩CF著 袁亚湘译.矩阵计算[M].北京:科学出版社,2001.76-78.
  • 6TEUNISSEN P J G. The Least-squares Ambiguity Decorrelation Ddjustment: a Method for Fast GPS Integer Ambiguity Estimation [ J ]. Journal of Geodesy, 1995, (70) :65-82.
  • 7TEUNISSEN P J G, DE J P J, TIBERIUS C C. The Least-squares Ambiguity Decorrelation Adjustment:Its Performance on Short GPS Baselines and Short Observation Spans[J]. Journal of Geodesy, 1997, (71):589-602.
  • 8KLEUSBERG A,TEUNISSEN P J G.GPS for Geodesy[ M ]. Berlin; Heidelberg; New York: Springer,1998. 262-333.
  • 9TEUNISSEN P J G. The Invertible GPS Ambiguity Transformations[J]. Manuscript Geodesy, 1995, 20(6) :489-497.
  • 10ZHOU Yang-mei, LIU Jing-nan. A New Approach to the Integer Transformation of GPS High-dimensional Ambiguity Vectors [ A ]. 2002 International Symposium on GPS/GNSS[C]. Wuhan: [s. n. ],2002.6-8.

共引文献66

同被引文献21

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部