期刊文献+

灰色SVR模型在珩磨尺寸预测中的应用 被引量:1

Application of Grey SVR Model in Honing Size Forecasting
下载PDF
导出
摘要 针对灰色(1,1)模型(Grey model(1,1), GM(1,1))对非指数型数据序列预测精度低的问题,提出了一种灰色支持向量回归(Grey support vector regression, GSVR)预测模型。该模型一方面通过参数累积估计、预测公式改进和数据等维递补,对灰色模型进行建模优化,另一方面通过差分变异和混沌局部搜索改进的粒子群算法,对支持向量回归机进行参数优化,再将二者相结合进行预测。对柱塞套内圆珩磨尺寸的预测结果表明,该模型的预测均方误差为0.3913,平均绝对百分比误差为4.90%,其预测精度较GM(1,1)模型显著提高。 To improve the forecasting accuracy of grey model (1,1)(GM(1,1)) for non-exponential data, a grey support vector regression (GSVR) model was proposed in this paper. On the one hand, the GM(1,1) was optimized by parameter accumulation estimation, forecasting formula deduction and data equal dimension complement;On the other hand, the support vector regression (SVR) was optimized by the particle swarm optimization (PSO) which was improved by differential mutation and chaotic local search;then the GSVR model was obtained by combining the optimized GM (1,1) and SVR. The forecasting results of the plunger bushing internal honing size suggest that the mean square error (MSE) of the proposed model is 0.3913, the mean absolute percentage error (MAPE) is 4.90%, and the forecasting accuracy is significantly enhanced compared to GM (1,1).
作者 李奇军 牛永江 宁会峰 LI Qi-jun;NIU Yong-jiang;NING Hui-feng(School of Electromechanics and Automobile Engineering, Tianshui Nomal University, Tianshui Gansu 741000, China;School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou Gansu 730050, China)
出处 《机械研究与应用》 2019年第2期32-37,共6页 Mechanical Research & Application
基金 国家自然科学基金(编号:51565033) 甘肃省教育厅科技研究项目(编号:2017A-076)
关键词 预测 灰色模型 粒子群算法 支持向量机 珩磨 forecasting grey model PSO SVR honing
  • 相关文献

参考文献2

二级参考文献9

  • 1李作清,陈志祥.精密内圆磨削过程建模与质量控制系统[J].华中理工大学学报,1993,21(5):84-87. 被引量:2
  • 2温雯,郝志峰.一种基于动态拓扑结构的PSO改进算法[J].计算机工程与应用,2005,41(34):82-85. 被引量:13
  • 3Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]//Proc. of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan: [s. n.], 1995.
  • 4Kennedy J. Small Worlds and Mega-minds: Effects of Neigh- borhood Topology on Particle Swarm Performance[C]//Proc. of Congress on Evolhtionary Computation. Washington D. C., USA: Is. n.], 1999.
  • 5Shi Y H, Eberhart R. A Modified Particle Swarm Optimizer[C]// Proc. of IEEE International Conf. on Evolutionary Computation. Piscataway, USA: IEEE Press, 1998.
  • 6Shi Yuhui, Eberhart R. Parameter Selection in Particle Swarm Op- timization[C]//Proc, of Annual Conference on Evolutionary Computation. Anchorage, Alaska, USA: [s. n.], 1998.
  • 7Barab~isi A L, Albert R'. Emergence of Scaling in Random Net- works[J]. Science, 1999, 286(5439): 509-512.
  • 8姚灿中,杨建梅.基于网络邻域拓扑的粒子群优化算法[J].计算机工程,2010,36(19):18-20. 被引量:5
  • 9亓四华,费业泰.应用灰色模型预测加工误差的研究[J].农业机械学报,2001,32(1):89-91. 被引量:9

共引文献18

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部