期刊文献+

混合核函数相关向量机在污垢预测中的应用 被引量:3

Application of Hybrid Kernel Function Relevance Vector Machine in Fouling Prediction
下载PDF
导出
摘要 污垢的热阻反映了污垢结垢的程度,准确预测污垢热阻,为污垢监测以及污垢对策提供了重要参考依据。近年来,混合核函数相关向量机开始用于预测变压器顶层油温。将基于混合核函数的相关向量机应用到污垢预测研究中,介绍混合核函数相关向量机的基本原理,通过在线监测装置,采集样本数据,进行仿真实验。结果表明混合核函数相关向量机能准确预测污垢热阻值,相对于单一核函数相关向量机,混合核函数相关向量机的预测精度更高。 Fouling resistance reflects the scale of the fouling. The precision of fouling prediction provides some important references for fouling monitoring and fouling countermeasure. Recently,the hybrid kernel function relevance vector machine(RVM)has been applied to oil temperature prediction for transformers.In this paper, the hybrid kernel function RVM is applied to the research of fouling prediction.The basic principles of the hybrid kernel function RVM are described . According to the online monitoring devices,the sample data is collected and the simulation is carried out. The simulation result shows that the hybrid kernel function RVM could accurately predict the fouling resistance.Comparing to the single kernel function,the precision of prediction is increased.
作者 解红刚 解红永 杜雅君 谭富军 梁金龙 XIE Honggang;XIE Hongyong;DU Yajun;TAN Fujun;LIANG Jinlong(Inner Mongolia EHV Power Supply Bureau,Hohhot 010080,China;State Grid Tianjin Jinghai Electric Power Supply Company,Tianjin 300000,China)
出处 《山东电力技术》 2019年第4期20-23,33,共5页 Shandong Electric Power
关键词 混合核函数相关向量机 预测 污垢热阻 核函数 hybrid kernel function relevance vector machine prediction fouling resistance kernel function
  • 相关文献

参考文献3

二级参考文献33

  • 1康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:498
  • 2张冰,孔锐.一种支持向量机的组合核函数[J].计算机应用,2007,27(1):44-46. 被引量:22
  • 3DUAN Qing, ZHAO Jianguo, NIU Lin, et al. Recession based on sparse bayesian learning and the applications in electric systems [ C ]//Fourth International Conference on Natural Computing, October 18-20, 2008, Jinan, China. 2008:106-111.
  • 4段青,赵建国,马艳.相关向量机与支持向量机在短期电力负荷预测中的比较[C]//全国电气工程博士论坛,成都:西南交通大学出版社,2008:314-319.
  • 5YU Weimiao, DU Tiehua, LIM Kahbin. Comparison of the support vector machine and relevant vector machine in regression and classification problems[ C ]//8th International Conference on Control, Automation, Robotics and Vision, December 6 -9, 2004, Kunming, China. 2004, 2:1309-1314.
  • 6BOWD C, MEDEIROS F A, ZHANG Zuobua, et al. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements [J]. Insestigative Ophthalmology & Visual ,Science, 2005,46(4) : 1322 - 1329.
  • 7STEINWART I. On the influence of the kernel on the generalization ability of support vector machines [ J ]. Journal of Machine Learning Research, 2001,2( 3 ):67-93.
  • 8VAPNIK V N. The Nature of Statistical Learning Theory [ M ]. New York : Springer-Verlag, 1995 : 11 - 13.
  • 9TIPPING M E, SMOLA A. Sparse Bayesian learning and the relevance vector machine [ J ]. Journal of Machine Learning Research, 2001, 1:211 -244.
  • 10VAPNIK V N, GOLOWICH S E, SMOLA A. Support vector method for function approximation, regression estimation and signal processing [ C ]//Advances in Neural Information Processing Systems 9, December 2-5, 1996, Denver, USA. 1996: 281- 287.

共引文献83

同被引文献49

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部