期刊文献+

Construction of trace silver modified core@shell structured Pt-Ni nanoframe@CeO2 for semihydrogenation of phenylacetylene 被引量:4

原文传递
导出
摘要 The Pt-Ni nanoframe catalysts have attracted great interest owing to their unique electronic structure and excellent catalytic performance. However, the stability of the tenu ous edges of nano frame-structures is dissatisfactory and their un iversal applicati ons in catalytic market beyond electrocatalytic reactions are yet to be tapped and explored. Herein, we developed a new core@ shell structured Pt-Ni nanoframe@CeO2 (Pt-Ni NF@CeO2) composite via etching the Ni from inhomogeneous Pt-Ni rhombic dodecahedra (Pt-Ni RD) by cerium(lll) acetate hydrate (Ce(OAc)3). In this path, Pt-Ni RD was used as self-sacrificial 怕mplate, while the Ce(OAc)3 serves as the provider of the Ce3* source and OH' for the formation of CeO2 shell, etchant of Pt-Ni RD, and the surface modification agent. By this way, the etching of Pt-Ni RD and the formation of the CeO2 shell are simultaneously proceeded to form the final Pt-Ni NF@CeO2 in one step. The obtained Pt-Ni NF@CeO2 exhibits strong in terfacial charge tran sfer interactio n betwee n Pt-Ni NF core and CeO2 shell eve n without reductio n treatment, leading to enhan ced catalytic activity in the hydrogenation of phenylacetylene. After introduction of trace silver, the Pt-Ni-Ag4.9 NF@CeO2 achieves remarkable catalytic performa nee for the selective con versi on of phe ny lacetyle ne to styrene: high con version (100%), styre ne selectivity (86.5%), and good stability. It reveals that enc apsulatio n n oble metal nano frames into metal oxide to form core @ shell structured hybrids will in deed enhance their stability and catalytic properties. Particularly, this work expends the application of noble metal nanoframes materials to hydrogenation reacti ons.
出处 《Nano Research》 SCIE EI CAS CSCD 2019年第4期869-875,共7页 纳米研究(英文版)
基金 National Natural Science Foundation of China (Nos. 21590794, 21771173, and 21521092) project development plan of science and technology of Jilin Province (Nos. 20180101179JC and 20160520126JH) CAS-CSIRO project (GJHZ1730).
  • 相关文献

同被引文献12

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部