期刊文献+

直链型偶氮苯聚氧乙烯醚稳泡剂的制备及表面活性 被引量:1

Synthesis and Surface Activity of Linear-type Azobenzene Polyoxyethylene Ether Foam Stabilizer
下载PDF
导出
摘要 以4-羟基偶氮苯、1,2-二溴乙烷、PEG-600为原料,合成直链型偶氮苯聚氧乙烯醚非离子表面活性剂(PEP-600)。通过红外光谱和核磁共振氢谱表征了其结构,并测试了其表面活性。结果表明,PEP-600临界胶束浓度(CMC)为4.99×10^(–3) mol/L,在CMC处表面张力为48.09 mN/m,饱和吸附量为2.48×10^(–3) mmol/m^2,亲水亲油平衡值(HLB)为14.20。将PEP-600与0.1 g/L的十二烷基硫酸钠复配最大发泡比为12,泡沫半衰期为220s左右,直链型分子结构的PEP-600在泡沫液膜表面排列紧密,具有优异的起泡性能,可用作泡沫染整稳泡剂。 A linear-type azobenzene polyoxyethylene ether nonionic surfactant(PEP-600), as a foam stabilizer was synthesized using p-hydroxyazobenzene, 1, 2-dibromoethane and polyethylene glycol(PEG-600) as raw materials. Its structure was characterized by FTIR and 1 HNMR. Its surface activity and foam properties were analyzed. The results showed that the critical micelle concentration(CMC) of PEP-600 was 4.99×10^–3 mol/L and the surface tension at CMC was 48.09 mN/m. The surface excess and HLB value of PEP-600 were 2.48×10^–3 mmol/m^2 and 14.20, respectively. Meanwhile, the maximum foaming ratio of PEP-600 with sodium dodecyl sulfate(0.1 g/L) was about 12 and the foam half-life was220 s, meaning that PEP-600 had excellent foaming property, which was attributed to the tight arrangement at the surface of foam film. So, PEP-600 had the potential to apply in foam dyeing as a foam stabilizer.
作者 费良 陈少瑜 殷允杰 王潮霞 FEI Liang;CHEN Shao-yu;YIN Yun-jie;WANG Chao-xia(Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China)
出处 《精细化工》 EI CAS CSCD 北大核心 2019年第4期639-643,共5页 Fine Chemicals
基金 中央高校基本科研业务费专项资金(JUSRP51724B)~~
关键词 偶氮苯 聚氧乙烯醚 非离子表面活性剂 稳泡剂 azobenzene polyoxyethylene ether nonionic surfactant foam stabilizer
  • 相关文献

参考文献8

二级参考文献56

  • 1姜宇嵘,栾吉梅,刘平芹,乔卫红,李宗石.Bola型表面活性剂[J].精细与专用化学品,2006,14(24):14-19. 被引量:7
  • 2崔晓红,陈洪,杨晓焱,刘爱红,毛诗珍,程功臻,袁汉珍,罗平亚,杜有如.季铵盐型双子表面活性剂C_(14)-s-C_(14)·2Br的聚集行为(英文)[J].物理化学学报,2007,23(3):317-321. 被引量:7
  • 3刘振东,梁鹏龙,陈小斌,余甲贤.糖基季铵盐表面活性剂的合成与表征[J].精细化工,2007,24(9):870-875. 被引量:21
  • 4MorOn MC, Pinazo A, P6rez L, et al. " Green" amino acid-based surfactants [ J ]. Green Chemistry, 2004,6:233 - 240.
  • 5Maryline Abert, Nathalie Mora. Synthesis and surface-active properties of a new class of surfactants derived from D-gluconic acid [ J]. Carbohydrate Research,2002,337:997 - 1006.
  • 6Capderou M. Valorisation of agricultural resources:synthesis ofgreen tensioactives agents from carbohydrates [ J ]. Preliminary Communication ,2004,7:607 - 610.
  • 7Shrestha L K, Sato T, Dulle M, et al. Effect of lipophilic tail architecture and solvent engineering on the structure of trehalose- base nonionic surfactant reverse micelles [ J ]. The Journal of Physical Chemistry B,2010,114 (37) : 12008 - 12017.
  • 8Sakai K, Umezawa S, Tamura M, et al. Adsorption and micellization behavior of novel gluconamide-type gemini surfactants [ J ]. Journal of Colloid and Interface Science, 2008,318:440 - 448.
  • 9Mariappan Periasamy, Muniappan Thirumalaikumar. Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis [ J ]. Journal of Organomtallic Chemistry,2000,609 : 137 - 151.
  • 10Matthew L Fielden, Christele Perrin, Andreas Kremer, et al. Sugar-based tertiary amino gemini surfaetants with a vesicle-to- mieelle transition in the endosomal pH range mediate efficient transfection in vitro[ J]. Eur J Biochem,2001,268 : 1269 - 1279.

共引文献23

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部