期刊文献+

基于AMEsim混合动力总成热管理系统仿真研究 被引量:3

Simulation research of hybrid powertrain thermal management system based on AMESim
下载PDF
导出
摘要 针对混合动力总成热管理系统多热源、多温区和变温度的特点,基于AMEsim平台对混合动力总成热管理系统在4个US06工况不同功率分配下进行仿真分析,结果发现发动机出口水温最高接近100℃,电机的出口水温最高不到50℃,均偏离了最佳工作温度,经分析,发现系统架构过于独立,水泵和风扇控制策略为ON/OFF控制策略。在此基础上,对热管理系统架构进行了优化,增加了预热模块,并将水泵和风扇控制策略改为简单有效的PID控制,优化后发动机出口温度基本在85℃~95℃之间,电机出口温度基本在55℃~70℃之间,结果表明:优化后的热管理系统满足了动力部件工作在最佳温度范围的要求。 Aiming at the characteristics of multi-heat sources,multi-temperature zones and variable temperature of hybrid powertrain thermal management system,the hybrid powertrain thermal management system is simulated based on AMEsim platform under four different power distributions.The results show that the highest water temperature of engine outlet is close to 100℃,and the highest water temperature of motor outlet is less than 50 ℃.Through analysis,it is found that the system architecture is too independent,and the control strategy of pump and fan is ON/OFF control strategy.On this basis,the structure of heat management system is optimized,the preheating module is added,and the control strategy of pump and fan is changed to PID control strategy.After optimization,the outlet temperature of engine is between 85℃and 95℃,and the outlet temperature of motor is between 55℃ and 70℃.The results show that the optimized control strategy is effective and the thermal management system meets the requirement that the power components work in the optimum temperature range.
作者 董桥桥 黄瑞 陈芬放 郭子硕 凌珑 俞小莉 DONG Qiaoqiao;HUANG Rui;CHEN Fenfang;GUO Zishuo;LING Long;YU Xiaoli
出处 《现代机械》 2019年第2期16-21,共6页 Modern Machinery
基金 浙江省科协育才工程(编号2018YCGC015)资助
关键词 混合动力总成 热管理系统 AMESIM 优化设计 仿真研究 hybrid powertrain thermal management system AMEsim optimal design simulation research
  • 相关文献

参考文献4

二级参考文献28

  • 1李战慧,李自光.基于SIMULINK的转运车液压系统动态特性仿真研究[J].机床与液压,2005,33(7):169-170. 被引量:5
  • 2魏英俊.新型液压驱动混合动力运动型多用途车的研究[J].中国机械工程,2006,17(15):1645-1648. 被引量:26
  • 3[1]Ap N S, Guyonvarch G, Cloarec M, et al. Cooling system and cl imate control of fuel cell electric vehicle (FCEV)[DB/CD]. Montreal, EVS17, 20 00.
  • 4[2]Ap N S. Valeo engine cooling. Influence of front end fan shroud on th e cooling system of fuel cell electric vehicle (FCEV)[DB/CD]. Berlin, EVS18, 2 001.
  • 5[3]Gordon S. Final report electric drive M113 vehicle refurbishment proj ect: Sacramento electric trans-portation consortium RA 93-23 program[R]. ADA 322403,1997.
  • 6[4]Ogrkiewicz R M. 装甲车辆电传动的新发展[J]. 周子朴译. 国外坦克. 1999,245(5):27-30.Ogrkiewicz R M. New development of the electric armored vehicle[J]. Zhou Zipu transl. Abroad Tank, 1999,245(5):27-30.(in Chinese)
  • 7Markel T, Wipke K. Modeling Grid-Connected Hybrid Electric Ve- hicles Using ADVISOR[ C ], National Renewable Energy Laborato- ry. Conference Paper NREL/CP-540-30601 ,2001,.
  • 8Markel T. Plug-In HEV Vehicle Design Options and Expectations [ C]. ZEV Technology Symposium. NREL/PR-540-40630, Sep. 2006.
  • 9Simpson A. Cost-Benefit Analysis of Plug-In Hybrid Electric Vehi- cle Technology[ C ]. 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (EVS-22). Yokohama, Japan, October, NREL/CP-540-41M85,2006.
  • 10中投顾问.混合动力汽车前景不明,插电式PHEV得利政策补贴[R].2011.

共引文献64

同被引文献15

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部