期刊文献+

基于模糊互信息的多标签特征选择 被引量:1

Multi-label Feature Selection Based on Fuzzy Mutual Information
下载PDF
导出
摘要 多标签特征选择已成为处理多标签数据的重要方法之一.利用一种基于模糊互信息的多标签特征选择算法,通过模糊离散化,给出模糊联合熵和模糊条件熵吸模糊互信息的计算方式.将原先的互信息特征选择算法推广到模糊情形中,提出一种基于模糊互信息的多标签特征选择算法.最后在同一准则下,将模糊互信息与原先的互信息特征选择算法及其他几种经典的特征选择算法进行比较.实验表明,此方法在一定程度上效果优于其他特征选择算法,是一种有效的多标签分类问题的特征选择方法. Multi-label feature selection is one of the most important methods for multi-label data processing.A multi-label feature selection algorithm based on fuzzy mutual information is proposed.Firstly,the fuzzy mutual information between attribute sets is considered by the label set,and the fuzzy joint entropy and fuzzy conditional entropy between attributes are taken into account.Then,the original mutual information feature selection algorithm is extended to the fuzzy case,and a new method based on fuzzy mutual information is proposed.Finally,under the same criterion,the fuzzy mutual information is compared with the original mutual information feature selection algorithm and several other classical feature selection algorithms.Experiments show that this method outperforms other feature selection algorithms to a certain extent and it's an effective feature selection method for the multi-label classification problems.
作者 张毅斌 马盈仓 ZHANG Yibin;MA Yingcang(College of Science,Xi'an Polytechnic University,Xi'an 710048,China)
出处 《河南科学》 2019年第4期521-527,共7页 Henan Science
基金 国家自然科学基金资助项目(11501435) 中国纺织工业联合会科技指导性项目(2016073) 陕西省教育厅科研计划项目资助(18JS042)
关键词 特征选择 互信息 模糊互信息 feature selection mutual information fuzzy mutual information
  • 相关文献

参考文献5

二级参考文献35

  • 1李凯,黄厚宽.一种基于聚类技术的选择性神经网络集成方法[J].计算机研究与发展,2005,42(4):594-598. 被引量:24
  • 2陈思睿,张永,杨志勇.基于粗糙集的特征选择方法的研究[J].计算机工程与应用,2006,42(21):159-161. 被引量:7
  • 3普运伟,金炜东,朱明,胡来招.核模糊C均值算法的聚类有效性研究[J].计算机科学,2007,34(2):207-210. 被引量:28
  • 4SUYKENS J A K, VANDEWALLE J. Recurrent least squares support vector machines[ J]. IEEE Transactions on Circuits and Systems, 2000, 47(7) : 1109 - 1114.
  • 5HANSEN L K, SALAMON P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10) : 993 - 1001.
  • 6ZHOU ZHIHUA, WU JIANXIN, TANG WEI. Ensembling neural networks: Many could be better than all[ J]. Artificial Intelligence, 2002, 137(1/2) : 239 -263.
  • 7Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 8Last M,Kandel A,Maimon O.Information theoretic algo- rithm for feature selection[J],Pattern Recognation, 2001, 34(22) :799-811.
  • 9Agrawal R, Imilinski T, Swami A.Mining association rules between sets of items in large database[C]//Proc of the ACM SIGMOD Conference on Management of Data, 1993.
  • 10Hu Qinghua, Xie Zongxia, Yu Daren.Hybrid attribute reduction based on a novel fuzzy rough model and infor- mation granulation[J].Pattern Recognition, 2007, 40 (12) : 3509-3521.

共引文献67

同被引文献24

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部