期刊文献+

HA/ZrO_2梯度涂层的制备及其抗冲击性能研究 被引量:3

Preparation and impact resistance of HA/ZrO_2 gradient coatings
下载PDF
导出
摘要 为了研究梯度结构对HA涂层结合强度和抗冲击性能的影响,采用等离子喷涂在钛合金基体上分别制备纯HA涂层、HA/ZrO_2涂层以及HA/HA+ZrO_2/ZrO_2梯度涂层(分别命名为H1,H2和H3涂层)。利用SEM和拉伸实验机对涂层的截面形貌和结合强度进行分析,采用落球冲击实验机对涂层进行冲击实验,观察涂层的失效形式并分析了涂层的抗冲击性能。结果表明:制备出的HA梯度涂层呈现明显的分层结构,每一层都有相应的厚度分布且层间结合良好。涂层的结合强度随着ZrO_2梯度层的增加而增加。与H1涂层和H2涂层相比,H3涂层具有更好的抗冲击性能。H1涂层的冲击失效形式为涂层大面积脱落,H3涂层的失效形式为涂层层间的剥离。 In order to study the effect of gradient structure on the bonding strength and impact resistance of HA coating,pure HA coating,HA/ZrO2 coating and HA/HA+ZrO2/ZrO2 gradient coating (named H1,H2 and H3) were deposited on titanium alloy substrate by plasma spraying.The cross section microstructure and bonding strength of the coating were analyzed by SEM and tensile testing machine.The impact test of the coating was carried out by falling ball impact tester.The impact failure mode of the coating was observed and the impact resistance of the coating was analyzed.The results show that the HA gradient coating shows obvious delamination structure and each layer has a corresponding thickness distribution and good interlaminar bonding.The bonding strength of the coating increases with the increase of ZrO2 gradient layer.Compared with H1 and H2 coating,H3 coating has better impact resistance.The impact failure mode of H1 coating is due to the large area shedding of the coating,the failure mode of H3 coating is delamination between coating layers.
作者 鲍雨梅 陈贺 王成武 BAO Yumei;CHEN He;WANG Chengwu(Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology of Ministry of Education&Zhejiang Province,Zhejiang University of Technology,Hangzhou 310014,China)
出处 《浙江工业大学学报》 CAS 北大核心 2019年第3期237-242,共6页 Journal of Zhejiang University of Technology
基金 国家自然科学基金资助项目(51105339)
关键词 羟基磷灰石 等离子喷涂 梯度涂层 结合强度 冲击性能 hydroxyapatite plasma spraying gradient coating bonding strength impact resistance
  • 相关文献

参考文献4

二级参考文献47

  • 1彭继荣,李珍.羟基磷灰石的应用研究进展[J].中国非金属矿工业导刊,2005(2):12-14. 被引量:19
  • 2于志云,孙康宁,孙晓宁,李爱民.纳米碳管/羟基磷灰石复合材料的凝胶注模[J].复合材料学报,2006,23(4):41-46. 被引量:4
  • 3Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6314): 56-58.
  • 4Frackowiak E, Jurewicz K, Szostak K, et al. Nanotubular materials as electrodes for supercapacitors [J]. Fuel Proc Techn, 2002, 77/78: 213-219.
  • 5Jiang Q, Qu Z M, Zhou G M, et al. A study of activated carbon nanotubes as electrochemical super capacitors electrode materials[J]. MaterLett, 2002, 57(4): 988-991.
  • 6Bernier P, Maser W, Journet C, et al. Carbon single wall nanotubes elaboration and properties [J]. Carbon, 1998, 36 (5/6) : 675-680.
  • 7Sheba R R J. Sorption behavior of Zn( Ⅱ ) ions on synthesized hydroxyapatites [J]. Colloid and Interface Science, 2007, 310(1) : 18-26.
  • 8Jinwook K, Yunho S, Yongsug T. Growth of etchpits formed during sonoelectrochemical etching of aluminum [J]. Electrochimea Aeta, 2005, 51(5) : 1012-1016.
  • 9Shepard S R, Jeffrey L, Koch G, et al. Diseoloration of ceramic hydroxyapatite used for protein chromatography [J]. Chromagraphy A, 2000, 891(1): 93-98.
  • 10Zhao H Y, Zhou H M, Zhang J X, et al. Carbon nanotube- hydroxyapatite nanocomposite: A novel platform forglucose/ O2 biofuel cell [J]. Biosens and Bioelectronics, 2009, 25(2) : 463-468.

共引文献22

同被引文献40

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部