摘要
从理论角度分析了一类三维Hindmarsh-Rose(H-R)神经元模型平衡点的数目及特性,运用数值模拟的方法研究了系统周期与混沌间隔的周期窗口的递增特性,借助理论与数值模拟相结合的方法,更加充分地解释了神经元丰富的放电规律.
The number and characteristics of equilibrium points in the three-dimensional Hinmarch-Rose(H-R)neuronal models are analyzed theoretically,and the increasing characterstic of periodic window between periodic region and chaotic region is studied by numerical simulation,the rich discharge patterns of neurons can also be explained more fully by a method combining theory with numerical simulation.
作者
杨琼
黄萌佳
蒲新会
Yang Qiong;Huang Mengjia;Pu Xinhui(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处
《宁夏大学学报(自然科学版)》
CAS
2019年第1期1-5,共5页
Journal of Ningxia University(Natural Science Edition)
基金
甘肃省自然科学基金资助项目(1161027
11262009)
兰州市创新创业基金资助项目(2015-RC-3)
关键词
稳定性
分岔
平衡点
神经元
周期窗口
stability
bifurcation
equilibrium point
neuron
periodic window