期刊文献+

Effect of wind damage on the habitat suitability of saproxylic species in a boreal forest landscape 被引量:3

Effect of wind damage on the habitat suitability of saproxylic species in a boreal forest landscape
下载PDF
导出
摘要 Many forest-dwelling species are dependent on deadwood. Sources of deadwood include competition- and senescence-related mortality of trees, and various damages. This study described a methodology for predicting the effect of wind damage on the amount of deadwood and suitability of the forest for saproxylic species. The methodology was used in a forested boreal landscape of 360 ha to analyze the effects of wind damage on the habitat quality for 27 groups of saproxylic species differing in their requirements for the species, size and decay stage of deadwood objects. A reference plan maximized net present value (MaxNPV) while others either minimized or maximized height differences between adjacent stands. Maximization of height differences resulted in high amount of wind damage and deadwood while minimizing height differences minimized wind damage and the amount of damage-related deadwood. The fourth plan maximized the average habitat suitability index (HSI) of the 27 groups of saproxylic species. The plans were compiled with and without even-flow harvesting constraints for three 10-year periods. Maximization of height differences between adjacent stands resulted in higher HSI values than obtained in the MaxNPV plan or in the plan than minimized height differences between adjacent stands. The average HSI of shade-demanding species correlated negatively with the amount of harvested timber. No strong correlations were found for light-demanding and indifferent species. Many forest-dwelling species are dependent on deadwood. Sources of deadwood include competition-and senescence-related mortality of trees, and various damages.This study described a methodology for predicting the effect of wind damage on the amount of deadwood and suitability of the forest for saproxylic species. The methodology was used in a forested boreal landscape of 360 ha to analyze the effects of wind damage on the habitat quality for 27 groups of saproxylic species differing in their requirements for the species, size and decay stage of deadwood objects. A reference plan maximized net present value(MaxNPV) while others either minimized or maximized height differences between adjacent stands. Maximization of height differences resulted in high amount of wind damage and deadwood while minimizing height differences minimized wind damage and the amount of damage-related deadwood. The fourth plan maximized the average habitat suitability index(HSI) of the 27 groups of saproxylic species. The plans were compiled with and without even-flow harvesting constraints for three 10-year periods. Maximization of height differences between adjacent stands resulted in higher HSI values than obtained in the MaxNPV plan or in the plan than minimized height differences between adjacent stands. The average HSI of shade-demanding species correlated negatively with the amount of harvested timber. No strong correlations were found for light-demanding and indifferent species.
出处 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第3期879-889,共11页 林业研究(英文版)
基金 funded by the UEF foundation(Project 930341) the University of Eastern Finland supported by the FORBIO project(Decision Number 293380)funded by the Strategic Research Council of the Academy of Finland,led by Prof.Heli Peltola at University of Eastern Finland
关键词 BIODIVERSITY HABITAT SUITABILITY index DEADWOOD Wind DISTURBANCE Optimization Simulated annealing Biodiversity Habitat suitability index Deadwood Wind disturbance Optimization Simulated annealing
  • 相关文献

同被引文献2

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部